Электрический ток
По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.
Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.
А теперь представьте, что вы наполняете два ведра из двух шлангов. У одного из них напор сильнее, у другого слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.
Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.
- Электрический ток — это направленное движение заряженных частиц.
Сила тока
Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.
Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник.
Как обозначется сила тока?
Сила тока обозначается буквой I
Сила тока I = q/t I — сила тока [A] q — заряд [Кл] t — время [с] |
Сила тока измеряется в Амперах. Единица измерения выбрана не просто так.
Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.
Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).
Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.
За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.
Задача
Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.
Решение:
Возьмем формулу силы тока
I = q/t
Подставим значения
I = 300 мКл / 2 с = 150 мА
Ответ: сила тока в цепи равна 150 мА
Постоянный ток
Господа, всем привет!
Сегодня речь пойдет о таком фундаментальном понятии физики вообще и электроники в частности, как сила тока. Каждый из вас, наверняка, не раз слышал этот термин. Сегодня мы постараемся разобраться в нем чуть получше.
Сегодня речь в первую очередь пойдет о постоянном токе. То есть о таком, величина которого все время постоянна по силе и по направлению. Уважаемые господа зануды могут начать докапываться — а что значит «все время»? Нет такого термина. На это можно ответить, что величина тока не должна меняться на протяжении всего времени наблюдения.
Итак, ток. Сила тока. Что же это такое? Все достаточно просто. Током называется направленное движение заряженных частиц. Заметьте, господа, именно направленное. Беспорядочное – тепловое – движение, от которого носятся туда-сюда электроны в металле или ионы в жидкости/газе нас мало интересует. А вот если на это беспорядочное движение наложить перемещение всех частиц в одну сторону – так это совсем иной коленкор.
Какие могут быть заряженные частицы? А вообще, пофиг какие, без разницы. Положительные ионы, отрицательные ионы, электроны – значение не имеет. Если мы имеем направленное движение этих уважаемых товарищей – значит, имеет место быть электрический ток.
Очевидно, ток имеет какое-либо направление. За направление тока принято принимать движение положительных частиц. То есть, хоть электроны и бегут от минуса к плюсу, считается, что направление тока в этом случае обратное — от плюса к минусу. Вот так вот все закручено. Что поделаешь – дань традиции.
Схематичное изображение проводника с током приведено на рисунке 1.
Рисунок 1 – Схематичное изображение проводника с током
Представим себе облако с комарами. Да, знаю, мерзкие существа, а уж облако – вообще жуть какая-то. Но все же, подавив отвращением, попытаемся их вообразить. Так вот, в этом облаке каждый мерзкий комар летает сам по себе. Это беспорядочное движение. А теперь представим себе спасительный ветерок. Он уносит одновременно всю эту комариную орду в одну сторону, будем надеяться, от нас. Это направленное движение. Заменив комаров на электроны, а ветерок – на некую таинственную движущую силу получим в общем-то некую аналогию с электрическим током.
Чаще всего имеет место быть ток, вызванный движением электронов. Да, друзья, во всей нашей жизни нас окружают бедные электрончики, вынужденные направленно, можно сказать строем, перемещаться под действием принуждающей силы. Они бегут по проводам линий электропередач, во всех наших розетках, во всех наших умных девайсах – компах, ноутах, смартфонах и работают просто как папа Карло, чтобы облегчить нашу нелегкую жизнь и наполнить ее приятностями.
Комары – комарами, это все круто, но настало время формальных определений.
Итак, господа, сила тока – это отношение заряда Δq , который переносится через некоторое сечение проводника S за время ∆t. Измеряется сила тока, как многие уже знают, в Амперах. Итак – ток в проводнике равен 1 Амперу, если через этот проводник проходит 1 Кулон за 1 секунду.
«Отлично!» — воскликнет уважаемый читатель. И что мне делать с этой формулой?!! Ну время ладно, у меня секундомер в айфоне есть, я засеку. А с зарядом как быть? Мне что, считать количество электронов в проводе и потом умножать на заряд одного электрона, благо это величина известная, чтобы определить ток?!
Спокойствие, господа! Все будет. Не спешите. Пока просто запомните, что была какая-то такая формулка. Потом окажется, что с ее помощью можно считать некоторые крутые вещи типа заряда конденсаторов и еще много чего.
Ну а пока… Пока можете взять амперметр, померить ток в цепи с лампочкой и узнать, какой заряд протекает каждую секунду через сечение проводника q = I·t = I·1c= I.
Да, каждую секунду через сечение проводника протекает заряд, равный силе тока в нем. Можете теперь умножить эту величину на заряд электрона (для тек кто забыл напоминаю, что он равен) и узнать, сколько электронов бежит в цепи. Может возникнуть ворос – нафига? Ответ автора – просто так, ради интереса. Практической пользы вы вряд ли из этого выжмите. Если только порадуете своего учителя. Задачка эта чисто академическая.
Может возникнуть вопрос – а как амперметр меряет ток? Он что, считает электроны? Конечно, нет, господа. Здесь мы имеем косвенные измерения. Они основаны на магнитном действии тока в дедовских аналоговых стрелочных амперметрах или на законе ома – путем преобразования протекающего тока через известное сопротивление в напряжение и последующей его обработкой – во всех современных мультиметрах. Но об этом чуть позже.
Теперь, прикола ради, оценим скорость с которой направленно перемещаются электроны в проводнике. Погодите читать дальше. Притормозите. Какая на ваш взгляд может быть скорость? Хотя бы порядок цифр? Скажу честно, когда будучи зеленым школяром, только-только начинающим нюхать физику, нам наш старый учитель задал этот вопрос, у меня в голове возникли цифры, близкие к скорости света. Я был уверен, что электроны движутся в проводниках не просто быстро, а очень быстро. Поэтому результаты расчета меня немного шокировали.
Сейчас я приведу этот расчет. Он довольно прост и должен перевариться даже гуманитариями. Если же у вас индивидуальная непереносимость матана, что ж, можете просто глянуть на результат.
Вспомним про наш заряд ∆q, которые проходит за время ∆t через сечение проводника ∆S про который мы говорили чуть выше. Как истинные математики, усложним его до безобразия, чтобы только после напряжения мозга было понятно, что мы написали тождество.
Господа, чесслово, никакого обмана. e − заряд электрона, n − концентрация электронов, то есть число штук в одном кубическом метре, v − скорость движения электронов. Очевидно, что v∙∆t∙∆S− это по сути объем, который пройдут элеткроны. Концентрацию множим на объем – получаем штуки, сколько штук электронов прошло. Штуки множим на заряд одного электрона – получаем общий заряд, прошедший через сечение. Я ж говорил, что все честно!
Введем понятие плотности тока. Зануды, которые уже что-то читали про это, сейчас воскликнут – ага, это векторная величина! Не спорю, господа, векторная. Но мы, для упрощения и без того нелегкой жизни, будем считать, что направление вектора плотности тока совпадает с осью проводника, что и бывает в большинстве случаем. Поэтому векторы сразу становятся скалярами. Грубо говоря, плотность тока – это сколько ампер приходится на один квадратный метр сечения проводника. Очевидно, для этого надо разделить силу тока на площадь. Имеем
Теперь, надеюсь, понятно, зачем мы так преобразовывали формулу? Чтобы сократить кучу всего!
Помним главное – мы ищем скорость. Выражаем ее:
Все бы хорошо, но концентрацию мы пока не знаем. Вспоминаем химию. Там была такая формулка
Где ρ=8900 кг/м3– плотность меди, NA=6·1023 число Авогадро, M=0,0635 кг/моль – молярная масса.
Господа, надеюсь не будет необходимости объяснять, откуда эта формула взялась. С химией я не очень дружу, честно. Хоть я все 11 лет проучился в школе с углубленным изучением химии, однако, в 8 классе я поступил в физико-математический класс, увлекся физикой, в особенности той ее частью, где рассказывается про электричество, а на химию, можно сказать, подзабил. Собственно, глубоко нас ее и не спрашивали, мы были физматиками . Однако, если вдруг-внезапно все-таки возникнет необходимость, я-таки готов углубиться в эти химические дебри и рассказать вам что здесь к чему.
Таким образом, скорость движения электронов в проводнике с током равна
Подставим конкретные числа. Зададимся для определенностью плотностью тока в 5 А/мм2.
Все остальные числа у нас уже есть. Может возникнуть вопрос – а почему именно 5 А/мм2.
Все просто, господа. Люди не в первый год занимаются электроникой. Накоплен некоторый опыт в этой сфере, или, выражаясь языком науки, эмпирические данные. Так вот, эти эмпирические данные гласят, что допустимая плотность тока в медных проводах составляет, обычно 5-10 А/мм2. При большей плотности тока возможен недопустимый перегрев проводника. Однако, для дорожек на печатной плате эта величина значительно больше и составляет 20 А/мм2 и даже более. Впрочем, это тема уже совсем другой беседы. Вернемся к нашей задаче, а именно, к вычислению скорости электронов в проводнике. Подставляя числа, получаем, что
Господа, расчет неопровержимо показывает, что электроны в проводнике с током движутся всего лишь со скоростью 0,37 миллиметра в секунду! Очень медленно. Правда следует помнить, что это не тепловое движение, а именно направленное. Тепловое движение намного, намного больше, порядка 100 км/с. Резонный вопрос – а почему же свет вспыхивает мгновенно, когда я поворачиваю выключатель? А помните, я говорил про некоторую принуждающую силу? Дело в ней! Но об этом – в следующей статье. Огромной вам всем удачи, и до новых встреч!
Вступайте в нашу группу Вконтакте
Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.
Social button for Joomla
Формула силы тока
Формула для чайников будет выглядеть вот так:
где
I — собственно сила тока, Амперы
N — количество электронов
t — период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды
Более правильная (официальная) формула выглядит вот так:
где
Δq — это заряд за какой-то определенный промежуток времени, Кулон
Δt — тот самый промежуток времени, секунды
I — сила тока, Амперы
В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10-19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅1018 электронов. 1 Кулон = 1 Ампер · 1 секунду.
Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅1018 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).
Если преподу не понравится ваш ответ, то скажите типа что-то этого:
Сила тока — это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.
Основные понятия закона Ома
Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.
Сила тока I
Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10-19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.
Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.
Напряжение U, или разность потенциалов
Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.
Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.
Сопротивление R
Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.
Памятник Георгу Симону Ому
Сила тока и сопротивление
Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову — это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу — это элементарно.
Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?
Первое, что приходит на ум — это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.
Второе — это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:
Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет «протащить» через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его «порвет», то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.
плавкий предохранитель
Как только сила тока через тонкий проводок предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.
сгоревший плавкий предохранитель
Поэтому, силовые кабели, через которые «бегут» сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.
Как измерить силу тока?
Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы — амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.
Более подробно как это сделать, можете прочитать в этой статье.
Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое «сила тока».
Основные единицы измерения силы тока
В качестве основной единицы измерения силы тока используют ампер (краткое обозначение – А). Ампер, получивший свое название по имени ученого физика Анри Ампера, входит в Международную систему единиц (СИ).
Если через поперечное сечение в течение 1 секунды проходит 1 кулон электричества, то сила тока в этом проводнике равна одному амперу. Как вспомогательные единицы применяются:
- миллиамперы (ма), одна тысячная или 10-3 ампер;
- микроамперы (мкА), одна миллионная или 10-6 ампер.
Сила тока является важным параметром, знание которого поможет в выборе кабелей с оптимальным для планируемой нагрузки размером сечения.
Сила тока — обозначение и базовые формулы
В формулах при расчете такого параметра, как сила тока, обозначение его величины с помощью буквы «I» является общепринятым. Основная формула выглядит как I=q/t, где q – количество электричества, а t – временной отрезок.
Также для расчета силы тока можно использовать такие параметры, как:
- фактическое напряжение (U);
- мощность (P).
В этом случае применяется формула I= P/U. Получение силы тока расчетным методом актуально в тех случаях, когда невозможно применение измерительных приборов, например, на этапе проектирования электросетей.
Основные понятия и формулы характеризующие электрический ток
Количественным параметром электрического тока является его сила, представляющая собой скалярную величину и выражающуюся в отношении заряда (принято обозначать буквой q) к периоду времени (t), за которое он пересекает сечение проводника. Следовательно, формула электрического тока, а если говорить правильно его сила, будет выглядеть следующим образом — I=q/t. Измеряется данный параметр в амперах. Так как скалярные величины являются действительными числами и определяются только значением, сила тока не может иметь отрицательный знак. С учетом того, что величина заряда не является постоянным параметром для разных электрических цепей, было введено понятие – плотность электрического тока (j), формула которой выглядят так – j=I/S, где S – площадь, пересекаемая зарядами. Следовательно, при увеличении силы тока и уменьшении поперечного сечения проводника плотность тока возрастает и наоборот. Как отмечалось выше, важными параметрами электричества, вернее электрической цепи являются напряжение в ней и сопротивление проводящих ток элементов.
Формула выражения силы электрического тока через сопротивление и напряжение
В отличие от фундаментальных исследований, в основе которых лежат теоретические выкладки данная зависимость была выведена практическим путем. Автором открытия является физик Ом, в честь которого закон и получил свое имя. По результатам своих опытов и экспериментов Ом пришел к выводу что сила тока (I) напрямую зависит от величины напряжения (U)и имеет обратную зависимость от сопротивления (R) элементов и деталей, включенных в электрическую цепь. Эту связь можно представить в виде – I=U/R. Путем несложных преобразований, формулы сопротивления и напряжения, выраженные через силу тока, будут выглядеть следующим образом – R=U/I и U=IxR, соответственно.
Формула силы электрического тока
Сопротивление электрического тока: формула
Формула напряжения электрического тока
Примеры типичных токов
Значения силы тока можно прочитать на информационных табличках на электроприёмниках или в руководствах к этим устройствам. В таблице ниже приведены типичные значения электрических токов для различных электроприёмников.
Потребитель | Сила тока |
Электрический термометр | около 0,00001 мА |
Наушники | 1 мА |
Лампа накаливания 60 Вт | 0,26 А |
Лампа накаливания 75 Вт | 0,33 А |
Холодильник | 0,8 А |
Зарядное устройство для смартфона (быстрая зарядка) | 2 А |
Персональный компьютер | 0,87 — 2,6 A |
Микроволновая печь | 3,5 А |
Пылесос | 4 — 9 А |
Стиральная машина | 6 — 10 А |
Электроплавильная печь | 15000 А |
Грозовая молния | 10 000 — 100 000 А (в среднем 36 000 А) |
Приборы для измерения силы тока
Прибором для измерения токовой силы называется амперметр, в дополнение к теме, чем измеряют ток. Бывает стрелочным, цифровым и электронным. Активно применяется в электролаборатории, автомобилестроении, точной науке и строительстве. По принципу действия бывает электромагнитным, магнитоэлектрическим, термоэлектронным, ферродинамическим, электродинамическим и цифровым. Измеряет как переменный, так и постоянный электроток.
Работает благодаря взаимодействию магнитного поля с подвижной катушкой или сердечником, который находится в корпусе. Пользоваться всеми типами очень просто. Все что нужно от пользователя, это внимательно изучить инструкцию и руководство к эксплуатации. Как правило, для начала измерения необходимо с помощью щупов прикоснуться к проводнику и нажать соответствующую кнопку. После на экране будет выведено значение в амперах. Стоит указать, что измеряет токовую силу также вольтметр, мультиметр и измерительная отвертка.
Амперметр
Измерение силы электрического тока
Электрический ток измеряется амперметрами. Также часто используются многофункциональные измерительные электроприборы, например, мультиметры, которые могут быть переключены в том числе в режим измерения силы электрического тока, и работать как амперметры.
Амперметры всегда подключаются последовательно к потребителю, в котором измеряется сила тока. Это означает, что ток через потребителя будет соответствует току через амперметр.
Для того чтобы определить силу тока таким способом, необходимо разорвать электрическую цепь в месте измерения и вставить амперметр.
Включают амперметр в цепь с помощью двух клемм, или зажимов, имеющихся на приборе. У одной из клемм амперметра, как правило, стоит знак «+», у другой «-» (иногда знака «-» нет). Клемму со знаком «+» нужно обязательно соединять с проводом, идущим от положительного полюса источника тока.
Поскольку амперметр также имеет внутреннее сопротивление, оно влияет на электрическую цепь во время измерения. Однако сопротивление амперметра обычно настолько мало, что им можно пренебречь.
На рисунке 1 показано такое последовательное соединение на примере лампочки и амперметра.
Измерение силы тока
Если вы не хотите вмешиваться в электрическую цепь, отсоединяя проводники, то электрический ток также можно измерить косвенно с помощью токовых клещей. Другой вариант — измерить напряжение на потребителе, а затем, зная электрическое сопротивление потребителя, рассчитать ток, используя закон Ома.
От чего зависит ток
Поскольку токовая сила является скалярной величиной, имеющей положительный и отрицательный заряд, то зависит она от мощности заряда, концентрации сосредоточенных в заряде частиц, скорости их движения и площади проводника. Стоит также указать, что зависит она от значения сопротивления с напряжением, величиной магнитного поля, числом катушечных витков, мощностью работы ротора, диаметром проводника и параметром генераторной установки.
Зависимости электротока от сопротивления и напряжения
Источник тока
Для поддержания в цепи электрического тока необходимо, чтобы на концах ее (рис. 2) существовала постоянная разность потенциалов φ1 – φ2. Пусть в начальный момент времени φ1 > φ2, тогда перенос положительного заряда q
от клеммы источника «+» к клемме «–» приведет к уменьшению разности потенциалов между ними . Для сохранения постоянной разности потенциалов необходимо перенести точно такой же заряд от клеммы «–» к клемме «+». Если в направлении от «+» к «–» положительные заряды движутся под действием сил кулоновских сил
Fk
, то в направлении от «–» к «+» перемещение зарядов происходит против направления действия кулоновских сил, т.е. под действием другой силы
F
ст, которая называется сторонней силой.
Рис. 2
- Сторонние силы
— это любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил.
Сторонние силы возникают в источнике тока.
- Источник тока
— это устройство, способное поддерживать разность потенциалов между концами электрической цепи и обеспечивать упорядоченное движение электрических зарядов во внешней цепи.
Источники электрического тока могут быть различны по своей конструкции, но в любом из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделение зарядов происходит под действием сторонних сил. Перечислим наиболее распространенные источники тока:
- гальванические элементы
(батарейки) (рис. 3, а) и
аккумуляторы
— сторонние силы используют энергию химических реакций; - генераторы
(динамо-машины) — сторонние силы используют механическую энергию падающей воды, ветра, пара и т.п.; - фотоэлементы
(солнечные батареи) (рис. 3, б) — сторонние силы используют энергию электромагнитных излучений (света).
- а
- б
Рис. 3
Источник электрического тока имеет два полюса (две клеммы), к которым присоединяются концы проводов.
Проводник, соединяющий клеммы источника снаружи, называют внешним участком цепи
. Сопротивление этого источника обозначают
R
и называют
внешним сопротивлением
.
Внутри самого источника заряды движутся по внутреннему участку цепи
. Сопротивление источника обозначают
r
и называют
внутренним сопротивлением
.
Сумма внешнего и внутреннего соспротивлений (R + r
) называют
полным сопротивлением цепи
.
На электрических схемах источник тока обозначается так, как показано на рис. 4. Положительный полюс (клемма) источника условно изображается более длинной чертой, чем отрицательный.
Рис. 4
Любой источник тока характеризуют электродвижущей силой — ЭДС.
- ЭДС (Электродвижущей силой) ε источника тока называют физическую скалярную величину, численно равную работе сторонних сил Ast
по перемещению единичного положительного заряда внутри источника тока:
\(~\varepsilon = \dfrac{A_{st}}{q} .\)
Единицей электродвижущей силы в СИ является вольт (В).
ЭДС является энергетической характеристикой источника тока.
- Термин «электродвигающая сила
» был введен Ампером в 1822 г. Аббревиатуру ЭДС принято читать без расшифровки.
См. также
Все о химических источниках тока
Какие бывают виды электрического тока в быту
Форма сигнала токов зависит от работы источника напряжения и сопротивления среды, через которую проходит сигнал. Чаще всего на практике домашнему мастеру приходится сталкиваться со следующим видами:
- постоянный сигнал, вырабатываемый от аккумуляторов или гальванических элементов;
- синусоидальный, создаваемый промышленными генераторами частоты 50 герц;
- пульсирующий, образуемый за счет преобразований различных блоков питания;
- импульсный, проникающий в бытовую сеть за счет разряда молний в воздушные линии электропередач;
- произвольный.
Чаще всего встречается синусоидальный или переменный ток: им питаются все наши приборы.
В современной проводке, питающейся синусоидальным напряжением, работает много полупроводниковых бытовых приборов. Они обладают не линейным сопротивлением, нарушают форму гармоники.
Эти помехи складываются по всей цепи от конкретного потребителя до питающего трансформатора, искажают идеальный синус произвольным образом. В результате изменяется как форма, так и величина питающего напряжения.
Сила тока в проводнике из металла: как используется в бытовых условиях
Способность внутренней структуры металлов по-разному влиять на условия движения направленных зарядов применяется для реализации специфических задач.
Чтобы передать электрическую энергию на большое расстояние используют металлические проводники повышенного сечения с высокой проводимостью: медь или алюминий. Более дорогие металлы серебро и золото работают внутри сложных электронных схемах.
Всевозможные конструкции проводов, шнуров и кабелей на их основе надежно эксплуатируются в домашней проводке.
Для обогревательных приборов применяют вольфрам и нихром,обладающие большим сопротивлением. Оно позволяет разогревать проводник до высоких температур при правильном подборе приложенной мощности.
Этот принцип воплотился в многочисленных конструкциях электрических нагревателей — ТЭН-ах.
Завышенная сила тока в проводнике из металла с хорошей проводимостью, но тонким сечением позволяет создавать предохранители,используемые как токовые защиты.
Они нормально работают в оптимальном режиме нагрузки, но быстро перегорают при бросках напряжения, коротких замыканиях или перегрузках.
Еще несколько десятков лет предохранители массово служили основной защитой домашней проводки. Сейчас их заменили автоматическими выключателями. Но внутри всех блоков питания они продолжают надежно работать.
Ток в полупроводниках и его характеристики
Электрические свойства полупроводников сильно зависят от внешних условий: температуры, облучения светом. Для увеличения их собственной проводимости в состав структуры добавлены специальные примеси.
Поэтому внутри полупроводника ток создается за счет собственной и примесной проводимости внутреннего p-n перехода. Носителями зарядов полупроводника выступают электроны и дырки. Если плюсовой потенциал источника напряжения приложен к полюсу p, а минусовой — к n, то через p-n переход станет течь ток за счет созданного ими движения.
При обратном приложении полярности p-n переход остается закрытым. Поэтому на картинке выше в первом случае показана светящаяся лампочка, а во втором — потухшая.
Аналогичные p-n переходы работают в других полупроводниковых конструкциях: транзисторах, стабилитронах, тиристорах…
Все они рассчитаны на номинальное прохождение силы тока. Для этого прямо на их корпус наносится маркировка. По ней заходят в таблицы технических справочников и оценивают полупроводник по электрическим характеристикам.
Пример вычисления силы тока при разных соединениях
Для примера возьмем цепь с параллельным включением двух ветвей с одинаковыми резисторами. Амперметр показывает, что сила тока в каждой ветви одинакова – 0,5 Ампер (А). Значение величины тока чуть дальше места соединения ветвей будут равны единице, т.е. суммируются:
0,5 + 0,5 = 1 А.
Измерим силу тока в последовательном соединении. В любой точке цепи амперметр будет показывать одинаковое значение (0,5 А), независимо от количества резисторов и их сопротивления:
0,5 = 0,5 = 0,5 А.
Последовательное соединение резисторов.
Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:
Здесь у нас классический случай последовательного соединения — два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:
I = I_1 = I_2
А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:
U = U_1 + U_2
В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:
U_1 = I_1R_1 = IR_1U_2 = I_2R_2 = IR_2
Тогда для вычисления общего напряжения можно будет использовать следующее выражение:
U = U_1 + U_2 = IR_2 + IR_2 = I(R_1 + R_2)
Но для общего напряжение также справедлив закон Ома:
U = IR_0
Здесь R_0 — это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:
R_0 = R_1 + R_2
Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.
Например для следующей цепи:
Общее сопротивление будет равно:
R_0 = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 + R_{10}
Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление будем работать в любом случае А если при последовательном соединении все сопротивления равны (R_1 = R_2 = … = R), то общее сопротивление цепи составит:
R_0 = nR
В данной формуле n равно количеству элементов цепи. С последовательным соединением резисторов мы разобрались, давайте перейдем к параллельному.
Законы Кирхгофа
Некоторые их называют правилами, так как они не представляют собой фундаментальных законов физики. Однако в электротехнике они могут рассматриваться как основные. Первое правило Кирхгофа является следствием закона сохранения заряда и заключается в том, что в любой точке электрической цепи алгебраическая сумма токов равна нулю.
Если рассматривать точку, лежащую внутри ветви цепи, тогда справедливым становится утверждение о равенстве входящего и выходящего токов. Там, где сходится три или большее количество ветвей, закон Кирхгофа позволяет строить уравнения, с помощью которых определяются различные характеристики электрических цепей. Этот закон является одним из проявлений закона сохранения энергии. Нужно всегда учитывать, что ток не может в какой-нибудь точке изменяться скачком. Ситуация, когда он возникает ниоткуда или пропадает в никуда, исключается первым законом Кирхгофа.
Простая электрическая цепь состоит из источника тока, его потребителя, например, электрической лампочки, и проводов, соединяющих их. Реальные цепи являются значительно более сложными, но при этом любая из них подчиняется законам электротехники. В частности, в цепи могут присутствовать многочисленные разветвления и замкнутые внутренние контуры. Второй закон Кирхгофа гласит, что сумма падений напряжений при обходе контура равна сумме имеющихся в нём ЭДС источников тока.
Через заряд и время
электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.
Определение понятия сила тока
Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t
Что такое напряжение и ток?
Кстати действительно что же такое электрический ток и напряжение? Я думаю, что никто на самом деле и не знает, ведь чтобы это знать это надо хотябы видеть. Кто может видеть ток, бегущий по проводам?
Да никто, человечество еще не достигло таких технологий, чтобы воочию наблюдать движения электрических зарядов. Все что мы видим в учебниках и научных трудах это некая абстракция созданная в результате многочисленных наблюдений.
Ну ладно об этом можно много рассуждать… Так давайте попробуем разобраться, что такое электрический ток и напряжение. Я не буду писать определения, определения не дают самого понимания сути. Если интересно, возьмите любой учебник по физике.
Так как мы его не видим электрического тока и всех процессов протекающих в проводнике, тогда попробуем создать аналогию.
И традиционно электрический ток текущий в проводнике сравнивают с водой бегущей по трубам. В нашей аналогии вода это электрический ток. Вода бежит по трубам с определенной скоростью, скорость это сила тока, измеряемая в амперах. Ну трубы это само собой проводник.
Хорошо, электрический ток мы себе представили, но а что такое напряжение? Сейчас помозгуем.
Вода в трубе, в отсутствии каких-либо сил (сила тяжести, давления) теч не будет, она будет покоиться как и любая другая жижа вылитая на пол. Так вот эта сила или точнее сказать энергия в нашей водопроводной аналогии и будет тем самым напряжением.
Но что происходит с водой бегущей из резервуара расположенного высоко над землей? Вода устремляется бурным потоком из резервуара к поверхности земли, гонимая силами тяготения. И чем выше от земли расположен резервуар тем с большей скоростью вытекает вода из шланга. Понимаете о чем я говорю?
Чем выше резервуар, тем больше сила (читай напряжение) воздействующая на воду. И тем больше скорость водного потока (читай сила тока). Теперь становится понятно и в голове начинает создаваться красочная картинка.
Работа и мощность электрического тока
Формула мощности (Р) электрического тока напрямую зависит от его работы (А). Под работой тока подразумевается преобразование электрической энергии в механический, тепловой, световой или иной ее вид. Величина данного процесса напрямую зависит от времени его протекания, силы тока и напряжения в сети. Это можно выразить следующей формулой – А=IxUxt. Произведение (IxU) является ничем иным как мощностью. Следовательно, чем выше напряжение или сила тока в сети, тем большую мощность имеет электрический ток и большую работу он может совершить за единицу времени. Формула мощности электрического тока имеет следующий вид – Р=А/t или Р=IxU.
Работа электрического тока формула
Формула мощности электрического тока
Поэтому, если необходимо вычислить, какую работу производит ток, протекая по цепи в течение определенного времени, необходимо умножить мощность на временной промежуток, выраженный в секундах. Рассмотрим применение формул расчета работы и мощности электрического тока на примере электрического двигателя, подключенного к сети 220 В, а сила тока, измеренная амперметром для этого участка, составила 10А.
Р (мощность двигателя) = 10А (сила тока) х 220В (напряжение в сети) = 2200 Вт = 2,2 кВт.
Зная данный показатель, а также реальное или предполагаемое время функционирования электродвигателя можно определить какую работу он совершит за этот отрезок времени или другим словами сколько будет потрачено электроэнергии. Если двигатель был включен, например, 1 час, то можно найти искомое значение.
А (работа, совершенная двигателем) = 2,2 кВт (мощность) х 1 (время работы в часах) = 2,2 кВт ч. Именно этот показатель будет отражен на приборе учета расхода электроэнергии.
Исходя из того, что электрический ток является физическим процессом, то какой-либо его неизвестный параметр можно определить, зная его остальные характеристики. Приведем наиболее распространенные формулы для определения характеристик электрической цепи применяемые в электротехнике.
Напряжение или разность потенциалов
- U = RxI
- U = P/I
- U = (P*R)1/2
Сила электрического тока
- I = U / R
- I = (P / R)1/2
Сопротивление
- R = U / I
- R = U2/ P
- R = P / I2
Что такое ЭДС: объяснение простыми словами
Под ЭДС понимается удельная работа сторонних сил по перемещению единичного заряда в контуре электрической цепи . Это понятие в электричестве предполагает множество физических толкований, относящихся к различным областям технических знаний. В электротехнике — это удельная работа сторонних сил, появляющаяся в индуктивных обмотках при наведении в них переменного поля. В химии она означает разность потенциалов, возникающее при электролизе, а также при реакциях, сопровождающихся разделением электрических зарядов.
В физике она соответствует электродвижущей силе, создаваемой на концах электрической термопары, например. Чтобы объяснить суть ЭДС простыми словами – потребуется рассмотреть каждый из вариантов ее трактовки. Прежде чем перейти к основной части статьи отметим, что ЭДС и напряжение очень близкие по смыслу понятия, но всё же несколько отличаются. Если сказать кратко, то ЭДС — на источнике питания без нагрузки, а когда к нему подключают нагрузку — это уже напряжение. Потому что количество вольт на ИП под нагрузкой почти всегда несколько меньше, чем без неё. Это связано с наличием внутреннего сопротивления таких источников питания, как трансформаторы и гальванические элементы.
Электродвижущая сила (эдс), физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль контура. Если через Eстр обозначить напряжённость поля сторонних сил, то эдс в замкнутом контуре (L) равна , где dl — элемент длины контура. Потенциальные силы электростатического (или стационарного) поля не могут поддерживать постоянный ток в цепи, т. к. работа этих сил на замкнутом пути равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — нагреванием проводников.
Сторонние силы приводят в движение заряженные частицы внутри источников тока: генераторов, гальванических элементов, аккумуляторов и т. д. Происхождение сторонних сил может быть различным. В генераторах сторонние силы — это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или Лоренца сила, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах — это химические силы и т. д. Эдс определяет силу тока в цепи при заданном её сопротивлении (см. Ома закон). Измеряется эдс, как и напряжение, в вольтах.
Что такое ЭДС.
Основные формулы и методические рекомендации по решению задач на законы постоянного тока
«Для того чтобы усовершенствовать ум,
надо больше рассуждать, чем заучивать».
Рене Декарт
Данная тема посвящена основным формулам и методическим рекомендациям по решению задач на законы постоянного тока
Постоянный
ток
– это электрический ток, который не изменяет своё направление с течением времени. Существует ряд закономерностей и правил, применимых к такому виду тока – это
законы постоянного тока
.
Итак, что такое электрический ток?
Электрическийток
– это упорядоченное движение заряженных частиц. Когда заряженные частицы движутся в проводнике в одном и том же направлении, возникает постоянный ток. Существуют различные типы электрических цепей, для решения которых применяются законы постоянного тока.
Сила тока
определяется скоростью прохождения заряда через поперечное сечение проводника, то есть, силу тока можно вычислить из отношения заряда к промежутку времени, за который этот заряд прошел через поперечное сечение.
Другой важной характеристикой является электрическое напряжение
. В электрической цепи,
напряжение
между двумя точками – это физическая величина, значение которой равно отношению работы электрического поля совершаемой при переносе пробного электрического заряда из одной точки в другую, к величине пробного заряда.
Аналогично силам сопротивления в механике, существует и электрическое сопротивление. Эта величина характеризует свойства проводника препятствовать протеканию электрического тока. Сопротивление
определяется как отношение напряжения между двумя точками проводника к силе тока, протекающего по этому проводнику.
Для протекания тока по электрической цепи, в первую очередь, нужен источник тока. Главной характеристикой источника тока является электродвижущая сила
. Эта величина характеризует работу сторонних сил, действующих в электрической цепи.
Сторонние силы
, в данном случае, — это силы неэлектрического происхождения, поскольку они совершают работу по разделению зарядов для поддержания напряжения в электрической цепи.
Сведём в таблицу основные формулы законов постоянного тока
Формула | Описание формулы |
Сила тока I на участке цепи прямо пропорциональна напряжению | |
Сила тока в проводнике, где q — перенесённый заряд, а | |
Сила тока в замкнутой цепи, работающей от источника тока с ЭДС , где R – сопротивление цепи, | |
ЭДC источника, где А ст – работа сторонних сил по перемещению заряда | |
ЭДС цепи с несколькими источниками тока, подключенными последовательно. Знак ЭДС конкретного источника определяется в соответствии с направлением обхода тока. | |
Напряжение на участке цепи с несколькими последовательно подключенными элементами, где Ui – напряжение на конкретном элементе. | |
Сила тока, проходящего через последовательно подключенные элементы цепи. | |
Сопротивление на участке цепи с несколькими последовательно подключенными элементами, где Ri – сопротивление конкретного элемента. | |
Электроёмкость системы последовательно подключённых конденсаторов, где Ci – ёмкость конкретногоконденсатора. | |
Сила тока с параллельно подключёнными элементами, где Ii – ток в конкретном элементе. | |
Напряжение на каждом из подключенных параллельно элементов цепи. | |
Расчет сопротивления участка цепи, с несколькими параллельно подключенными элементами. | |
Ёмкость системы параллельно подключённых конденсаторов. | |
Работа электрического тока I при напряжении | |
Количество теплоты, выделяющееся в результате протекания электрического тока по проводнику. | |
Мощность электрического тока I при напряжении | |
Сопротивление проводника длиной l и площадью поперечного сечения | |
Зависимость сопротивления проводника от темпратуры, где R 0 – сопротивление проводника при температуре 0ºС, |
Как видно из последней функции, сопротивление линейно зависит от температуры, поэтому соответствующий график представляет собой прямую. Однако, следует отметить, что эта зависимость верна только для проводников: полупроводники ведут себя совершенно иначе, и при увеличении температуры, их сопротивление, наоборот уменьшается.
Также, необходимо отметить, что у отдельно взятого проводника может быть своя вольт-амперная характеристика (то есть, зависимость силы тока от напряжения). Для её определения проводник включается в цепь, и к нему подключают амперметр и вольтметр, чтобы произвести соответствующие измерения. Например, на графике показана вольт-амперная характеристика проводника, в котором сила тока пропорциональна квадрату напряжения.
Методические рекомендации по решению задач на законы постоянного тока
1. Нарисовать схему электрической цепи, описанной в задаче, обозначив не ней все необходимые величины.
2. Вывести соотношения между величинами, используя правила последовательного и параллельного подключения.
3. При необходимости применить закон Ома для участка цепи или для полной цепи.
4. При необходимости нарисовать упрощённую эквивалентную схему цепи.
5. В случае надобности рассмотреть работу или мощность, вырабатываемую тем или иным элементом цепи.
6. На основании применённых законов и правил, составить систему уравнений и решить её, относительно искомых величин.
7. Произвести необходимые вычисления и записать результаты в ответ.