Восемь простых схем на транзисторах для начинающих радиолюбителей


Однокаскадный усилитель ЗЧ

Это простейшая конструкция, которая позволяет продемонстрировать усилительные способности транзистора Правда, коэффициент усиления по напряжению невелик — он не превышает 6, поэтому сфера применения такого устройства ограничена.

Тем не менее его можно подключить, скажем, к детекторному радиоприемнику (он должен быть нагружен на резистор 10 кОм) и с помощью головного телефона BF1 прослушивать передачи местной радиостанции.

Усиливаемый сигнал поступает на входные гнезда X1, Х2, а напряжение питания (как и во всех остальных конструкциях этого автора, оно составляет 6 В — четыре гальванических элемента напряжением по 1,5 В, соединенных последовательно) подается на гнезда ХЗ, Х4.

Делитель R1R2 задает напряжение смещения на базе транзистора, а резистор R3 обеспечивает обратную связь по току, что способствует температурной стабилизации работы усили теля.

Рис. 1. Схема однокаскадного усилителя ЗЧ на транзисторе.

Как происходит стабилизация? Предположим, что под воздействием температуры увеличился ток коллекто ра транзистора Соответственно увеличится падение напряжения на резисто ре R3. В итоге уменьшится ток эмитте ра, а значит, и ток коллектора — он достигнет первоначального значения.

Нагрузка усилительного каскада — головной телефон сопротивлением 60.. 100 Ом. Проверить работу усилителя несложно, нужно коснуться входного гнезда Х1 например, пинцетом в телефоне должно прослушиваться слабое жужжание, как результат наводки пере менного тока. Ток коллектора транзис тора составляет около 3 мА.

Экономичный УНЧ на трех транзисторах

Для портативной радиоэлектронной аппаратуры важным параметром является экономичность УНЧ. Схема такого УНЧ представлена на рис. 10 [РЛ 3/00-14]. Здесь использовано каскадное включение полевого транзистора VT1 и биполярного транзистора VT3, причем транзистор VT2 включен таким образом, что стабилизирует рабочую точку VT1 и VT3.

При увеличении входного напряжения этот транзистор шунтирует переход эмиттер — база VT3 и уменьшает значение тока, протекающего через транзисторы VT1 и VT3.

Рис. 10. Схема простого экономичного усилителя НЧ на трех транзисторах.

Как и в приведенной выше схеме (см. рис. 6), входное сопротивление этого УНЧ можно задавать в пределах от десятков Ом до десятков МОм. В качестве нагрузки использован телефонный капсюль, например, ТК-67 или ТМ-2В. Телефонный капсюль, подключаемый при помощи штекера, может одновременно служить выключателем питания схемы.

Напряжение питания УНЧ составляет от 1,5 до 15 В, хотя работоспособность устройства сохраняется и при снижении питающего напряжения до 0,6 В. В диапазоне напряжения питания 2… 15 В потребляемый усилителем ток описывается выражением:

1(мкА) = 52 + 13*(Uпит)*(Uпит),

где Uпит — напряжение питания в Вольтах (В).

Если отключить транзистор VT2, потребляемый устройством ток увеличивается на порядок.

Двухкаскадный УЗЧ на транзисторах разной структуры

Он выполнен с непосредственной связью между каскадами и глубокой отрицательной обратной связью по постоянному току, что делает его режим независящим от температуры окружающей среды. Основа температурной стабилизации — резистор R4, работаю щий аналогично резистору R3 в предыдущей конструкции

Усилитель более «чувствительный” по сравнению с однокаскадным — коэффициент усиления по напряжению достигает 20. На входные гнезда можно подавать переменное напряжение амплитудой не более 30 мВ, иначе возникнут искажения, прослушиваемые в головном телефоне.

Проверяют усилитель, прикоснувшись пинцетом (или просто пальцем) входного гнезда Х1 — в телефоне раздастся громкий звук. Усилитель потребляет ток около 8 мА.

Рис. 2. Схема двухкаскадного усилителя ЗЧ на транзисторах разной структуры.

Эту конструкцию можно использовать для усиления слабых сигналов например, от микрофона. И конечно он позволит значительно усилить сигнал 34, снимаемый с нагрузки детекторного приемника.

Измерение тока на стороне низкого напряжения

При измерении тока на стороне низкого напряжения токовый шунтовый резистор устанавливается между активной нагрузкой и заземлением. Наиболее подходящая схема измерения тока на стороне низкого напряжения показана на рисунке 2. В этой схеме используется токовый усилитель INA181 производства Texas Instruments, хотя и многие другие усилители также можно использовать для измерений на стороне низкого напряжения.

Рис. 2. Цепь измерения тока со стороны низкого напряжения с использованием INA181

Измерение тока со стороны низкого напряжения реализовать проще, поскольку напряжение с датчика на токовом шунтовом резисторе снимается относительно земли. Эта конфигурация позволяет использовать токовый усилитель с низким напряжением питания, потому что измеряемое напряжение лишь на единицы милливольт выше потенциала заземления схемы. В данной конфигурации снимаемое с датчика напряжение не накладывается на более высокое напряжение, поэтому не требуется подавление синфазного сигнала. Метод измерения со стороны низкого напряжения — самый простой и недорогой способ реализации.

Недостатком измерения тока на стороне низкого напряжения является то, что нагрузка в этом случае не имеет прямого соединения с заземлением из-за установки шунтового резистора, в результате чего нижняя сторона нагрузки находится под напряжением в несколько милливольт относительно земли.

Схема подключения без непосредственного соединения с цепью земли может вызвать проблемы в случае короткого замыкания между нагрузкой и ее корпусом. Такое короткое замыкание может произойти, например, если заключенная в металлический кожух нагрузка, например, двигатель, имеет короткое замыкание обмотки на корпус. Токоизмерительный резистор, возможно, не сможет обнаружить это короткое замыкание.

Кроме того, синфазное входное напряжение усилителя должно включать заземление для измерения на стороне низкого напряжения. Обычно это не проблема для усилителей, работающих с двухполярными источниками питания, но проблема может возникнуть в случае однополярного. Поэтому диапазон синфазного напряжения, который включает заземление, становится важным критерием при выборе подходящего усилителя для измерений на стороне низкого уровня напряжения.

Есть еще один важный аспект данного способа измерения тока. Обратите внимание, что АЦП Texas Instruments ADS114 на рис. 2 подключен по цепи питания непосредственно к заземлению, а входные цепи АЦП и усилителя INA181 на нижней стороне напряжения подключены к одной точке заземления.

При измерении тока с использованием малых напряжений, создаваемых на низкоомных шунтовых резисторах проходящим через них большим током нагрузки, важно помнить о том, что не все точки заземления могут иметь одинаковый потенциал. Когда по цепям или шинам заземления протекают большие токи от силовых нагрузок, довольно легко получить между двумя точками заземления в системе разность потенциалов в несколько милливольт. В качестве меры предосторожности всегда располагайте подключаемые к заземлению провода на очень близком расстоянии друг от друга, чтобы минимизировать разницу напряжения между ними.

Для устранения этого источника ошибки при измерении со стороны низкого напряжения опорный вывод заземления АЦП должен быть подключен в непосредственной близости от нижней стороны токоизмерительного резистора и входа токового усилителя. Не каждая удобная часть шины заземления может быть выбрана в качестве точки подключения. Для полной уверенности отметьте эту точку и все заземляющие подключения к ней по типу «звезда» непосредственно на схеме.

Аналогично, входное напряжение смещения усилителя тока непропорционально влияет на точность усиления, когда напряжение на токоизмерительном резисторе слишком маленькое. По этой причине лучше выбирать усилитель с очень низким входным напряжением смещения. Усилитель INA181, показанный на рисунке 2, имеет входное напряжение смещения ±150 мкВ для измерительных схем со стороны низкого напряжения, где отсутствует синфазное напряжение.

Несмотря на отдельные недостатки, схема измерения тока на стороне низкого напряжения является хорошим выбором, если нагрузка не требует непосредственного соединения с заземлением и, если внутренние короткие замыкания между нагрузкой и корпусом либо не являются проблемой, либо не должны обнаруживаться схемой измерения тока.

Тем не менее, для конструкций, которые должны соответствовать требованиям функциональной безопасности, лучшим выбором является метод измерения тока на стороне высокого напряжения.

Двухкаскадный УЗЧ на транзисторах одинаковой структуры

Здесь также использована непосредственная связь между каскадами, но стабилизация режима работы несколько отличается от предыдущих конструкций.

Допустим, что ток коллектора транзистора VТ1 уменьшился Падение напряжения на этом транзисторе увеличится что приведет к увеличению напряжения на резисторе R3, включенном в цепи эмиттера транзис тора VТ2.

Благодаря связи транзисторов через резистор R2, увеличится ток базы входного транзистора, что приведет к увеличению его тока коллектора. В итоге первоначальное изменение тока коллектора этого транзистора будет скомпенсировано.

Рис. 3. Схема двухкаскадного усилителя ЗЧ на транзисторах одинаковой структуры.

Чувствительность усилителя весьма высока — коэффициент усиления достигает 100. Усиление в сильной степени зависит от емкости конденсатора С2 — если его отключить, усиление снизится. Входное напряжение должно быть не более 2 мВ.

Усилитель хорошо работает с детекторным приемником, с электретным микрофоном и другими источниками слабого сигнала. Ток, потребляемый усилителем — около 2 мА.

Простой усилитель на одном транзисторе

Простейший УНЧ, выполненный по схеме с общим эмиттером, показан на рис. 1. В качестве нагрузки использован телефонный капсюль. Допустимое напряжение питания для этого усилителя 3…12 В.

Величину резистора смещения R1 (десятки кОм) желательно определить экспериментально, поскольку его оптимальная величина зависит от напряжения питания усилителя, сопротивления телефонного капсюля, коэффициента передачи конкретного экземпляра транзистора.

Рис. 1. Схема простого УНЧ на одном транзисторе + конденсатор и резистор.

Для выбора начального значения резистора R1 следует учесть, что его величина примерно в сто и более раз должна превышать сопротивление, включенное в цепь нагрузки. Для подбора резистора смещения рекомендуется последовательно включить постоянный резистор сопротивлением 20…30 кОм и переменный сопротивлением 100… 1000 кОм, после чего, подав на вход усилителя звуковой сигнал небольшой амплитуды, например, от магнитофона или плеера, вращением ручки переменного резистора добиться наилучшего качества сигнала при наибольшей его громкости.

Величина емкости переходного конденсатора С1 (рис. 1) может находиться в пределах от 1 до 100 мкФ: чем больше величина этой емкости, тем более низкие частоты может усиливать УНЧ. Для освоения техники усиления низких частот рекомендуется поэкспериментировать с подбором номиналов элементов и режимов работы усилителей (рис. 1 — 4).

Двухтактный усилитель мощности ЗЧ на транзисторах

Он выполнен на транзисторах разной структуры и обладает усилением по напряжению около 10. Наибольшее входное напряжение может быть 0,1 В.

Усилитель двухкаскадный первый собран на транзисторе VТ1 второй — на VТ2 и VТЗ разной структуры. Первый ка скад усиливает сигнал 34 по напряжению причем обе полуволны одинаково. Второй — усиливает сигнал по току но каскад на транзисторе VТ2 “работает” при положительных полуволнах, а на транзисторе VТЗ — при отрицательных.

Рис. 4. Двухтактный усилитель мощности ЗЧ на транзисторах.

Режим по постоянному току выбран таким что напряжение в точке соединения эмиттеров транзисторов второго каскада равно примерно половине напряжения источника питания.

Это достигается включением резистора R2 обратной связи Ток коллектора входного транзистора, протекая через диод VD1, приводит к падению на нем напряжения. которое является напряжением смещения на базах выходных транзисторов (относительно их эмиттеров), — оно позволяет уменьшить искажения усиливаемого сигнала.

Нагрузка (несколько параллельно включенных головных телефонов либо динамическая головка) подключена к усилителю через оксидный конденсатор С2.

Если усилитель будет работать на динамическую головку (сопротивлением 8 -.10 Ом), емкость этого конденсатора должна бы ь минимум вдвое больше Обратите внимание на подключение нагрузки первого каскада — резистора R4 Его верхний по схеме вывод соединен не с плюсом питания, как это обычно делается, а с нижним выводом нагрузки.

Это так называемая цепь вольтодобавки, при которой в базовую цепь выходных транзисторов поступает небольшое на пряжение ЗЧ положительной обратной связи, выравнивающее условия работы транзисторов.

Вот как раз выходное сопротивление мне и не понравилось. По сути коэффициент усиления данного усилителя зависит от сопротивления нагрузки, а она равна параллельному сопротивлению R4 и входному сопротивлению следующего за ним каскада.

Хотелось, что бы выходное сопротивление было по меньше. Не долго думая поставил на выход эмиттерный повторитель. На выходе опять получил практически то же напряжение, т.е 1 вольт.

Стал проверять выходное сопротивление. К моему разочарованию при подключении на выход резистора порядка нескольких сотен Ом сигнал стал обрезаться снизу. При этом на коллекторе первого транзистора никаких искажений не было. Стал уменьшать входной сигнал. В конце концов оказалось, что выходное сопротивление этого усилителя всего несколько десятков Ом, но выходное напряжение при этом не должно превышать величины 0,1 вольта.

Т.е. при полной нагрузке усилитель усиливает в пять раз и входное напряжение при полной нагрузке не должно превышать 20 мв. В этом случае получаем на выходе 0,1 вольт неискаженного сигнала.

Т.о. получилось, что для того, что бы на выходе получить напряжение порядка вольта нагрузка этого усилителя должна быть больше одного килоома. В общем, для усиления в десять раз для малых входных напряжений данный усилитель вполне подходит если его здорово его не нагружать.

С этим можно справиться, если на выход поставить двухтактный эмиттерный повторитель.

Транзисторы желательно подобрать с близкими параметрами. Резистором R6 нужно выставить в точке соединения эмиттеров половину напряжения питания. При данных на схеме деталях выходное сопротивление равно 30 ом, а главное то, что при нагрузке в 270 ом максимальное неискаженное напряжение достигает 2 вольта.

Ступеньки нет даже при малых напряжениях на выходе, т.к. эмиттерный повторитель работает в классе «А»

Данный эмиттерный повторитель можно поставить на выходе любой схемы. Во всяком случае я нагружал на наушники 32 ома и даже на 16 ом. Слышно нормально.

На этом с ним закончил и решил попробовать другие схемы. Схемы конечно не сам придумывал. Просто искал в книжках.

Вторая попытка усилить ровно в десять раз.

Схему взял общеизвестную. Просто решил её испытать.

Как известно усиление, входное и выходное сопротивление данного усилителя зависит от глубины ООС. Её удобнее менять подбором резисторов R1и R2, но оставлять их сумму постоянной. Этим мы избежим изменения режима по постоянному току при изменении ООС.

Для удобства в качестве их взял переменный на 47 ком и к средней точке подключил конденсатор С1 по схеме. Резистор R1 в зависимости от коэффициента усиления может быть от сотен ом, до десятка килом.

Чем меньше этот резистор, тем больше усиление, но меньше входное сопротивление.

Подал на вход 0,2 вольта и переменным резистором установил напряжение на выходе в десять раз больше, т.е. 2 вольта.

Перешел к измерению входного и выходного сопротивления. Входное сопротивление оказалось порядка 200 ком. Выходное сопротивление порядка 60 ом. При этом максимальное неискаженное напряжение на выходе получается 0,6 вольт. При дальнейшем увеличении входного сигнала появляется ограничение снизу. Значит если его не нагружать, то выходное неискаженное напряжение можно получить больше двух вольт, т.е. подавать на вход порядка 0,2 вольта.

При нагрузке 60 ом выходное неискаженное напряжение достигает 0,6 вольт при входном напряжении 120 мв

По-моему хороший усилитель. Я его поставил на входе своего вольтметра и получил чувствительность по входу 10 мв

Еще про транзисторы. Я их брал какие под руку попадутся, начиная с КТ315 и КТ31. Т.е. любые маломощные транзисторы, хотя имеет смысл брать транзисторы с большим коэффициентом усиления по току. Имеется в виду порядка 100

Усилить ровно в сто раз.

В принципе ничто не мешает сделать коэффициент усиления предыдущего усилителя в сто раз по напряжению. Для этого нужно просто изменить номиналы резисторов R1 и R2.

Т.к. у меня там стоит переменный резистор, то мне достаточно просто покрутить. При этом R1 уменьшается, а R2 увеличивается. Смотрим параметры. Подаю на вход 10 мв. Входное сопротивление получилось порядка 30 ком. Выходное сопротивление порядка 100 ом. Максимальное неискаженное напряжение на выходе 1 вольт при входном 10 мв. Т.е. больше 10 мв на данный усилитель подавать нельзя, т.к. начинаются искажения сигнала. При нагрузке 100 ом на выходе получается 0,5 вольт неискаженного сигнала.Исходя из этого, данный усилитель и можно применять.

На глаза попалась еще несколько схем. Решил тоже проверить.

Резистором R1 выставил на выходе половину питания, т.е. 3 вольта в моем случае.

Дальше, как и выше. Сначала на вход подал 10 мв и получил на выходе 0,8 вольт. Т.е. получилось, что он в 80 раз у меня усиливает. Ничего менять не стал, хотя можно было немного увеличить резистор R6. Дальше проверил выходное, входное сопротивление и максимальное выходное напряжение на выходе при полной нагрузке усилителя. Входное сопротивление оказалось порядка 15 ком. Выходное сопротивление порядка 150 ом. При этом при нагрузке усилителя резистором 150 ом максимальное выходное неискаженное напряжение усилителя 0,4 вольта. При нагрузке 1 ком можно добиться неискаженного напряжения на выходе 1,5 вольта.

Если усилитель не нагружать, то выходное неискаженное напряжение на выходе составляет почти половину питания. Если нужно большое напряжение на выходе на низкоомной нагрузке, то на выходе можно поставить двухтактный эмиттерный повторитель, как ставил в первой схеме.

Третья схема усилителя в сотню раз на двух транзисторах. Она хорошо подходит для фантомного питания, например от звуковой карты. Если успею, то попробую её подключить к компьютеру, а вместо микрофона подключить просто динамическую головку.

Усиление зависит от величины резистора R3. У меня стоит 5 ом. Усиление получилось порядка 180. В зависимости от этого резистора усиление можно менять в широких пределах. Чем меньше этот резистор, тем больше усиление. Недостаток этого усилителя в том, что его усилительные свойства сильно зависят от сопротивления нагрузки и его лучше нагружать на сопротивление больше чем R4. Так же у этого усилителя довольно низкое входное сопротивление и составляет всего лишь 1,5 ком, но при желании на входе можно поставить обычный эмиттерный повторитель на одном транзисторе. Если R4 поставить 1 ом, то усиление возрастает до 400, а входное сопротивление становится меньше одного килоома. Схема конечно работоспособна, но нужно учитывать её особенности. А теперь.

Усилить в тысячу раз или еще больше.

Во первых в тысячу раз можно усилить поставив последовательно два усилителя с коэффициентом 100 и 10. Для начала я к предыдущему усилителю добавлю еще один каскад и посмотрю, что из этого выйдет.

При таком усилении первый транзистор желательно поставить с нормированным коэффициентом шума. Резистором R5 выставил в точке «А» половину напряжения питания, что бы ограничение при сильном сигнале было симметричным.

Усиление при R4 равным 5 ом получилось 3500.

При R4 равном 1 ом усиление получилось больше десяти тысяч.

Сигнал с генератора пришлось подавать через делитель 1:30

С резистором R4 равным 5 ом выходное сопротивление получилось порядка 600 ом и при этом максимальное неискаженное напряжение на выходе достигает 0,7 вольта при напряжении на входе усилителя порядка 0,4 мв или 400мкв. Это кому как больше нравится.

Подбором R4 усиление можно выставить как и было задумано 1000.

При R4 равном 30 ом усиление стало 1300. Входное сопротивление порядка 10 ком.

Максимальное выходное напряжение при нагрузке усилителя на резистор 600 ом составило около 0,7 вольт. При большем сопротивлении нагрузки выходное неискаженное напряжение еще больше. Этот усилитель мне понравился.

С R4 равным 1 ом не стал смотреть параметры. Думаю, усиление в 10 000 раз вряд ли когда мне понадобится, хотя кто его знает.

Задержать на десять секунд.

Еще одна задача, это получить выдержку времени на какое то время. Самый хороший способ это взять микроконтроллер, написать программу и вперед.

Второй способ, это применение логики.

Третий способ, это сделать это на полевых транзисторах.

Четвертый, это использовать то свойство КМОП логики, что она имеет большое входное сопротивление и её можно использовать вместо полевых транзисторов.

Все это широко известно и схемы легко находятся с помощью поисковиков.

В данном случае я просто решил попробовать, что получится если использовать одни биполярные транзисторы. Ничего нового я тут не придумывал и все это по сути элементарные схемы.

Просто я их спаял и посмотрел, что же от них можно получить. О точности выдержки конечно и говорить нечего, она низкая, но иногда это не имеет значения.

Первая схема просто «в лоб»

Взял составной эмиттерный повторитель и на входе стал заряжать емкость через резистор.

Питание для всех экспериментов взял 9 вольт.

В итоге получилось, что до напряжения пробоя стабилитрона схема ведет себя хорошо, но когда начинает открываться первый транзистор напряжение на выходе начинает немного прыгать, хотя и незначительно. Что бы уменьшить это, поставил конденсатор С2.

По этой же причине величину времязадающего транзистора не нужно брать более 270 ком, а лучше порядка 50 ком.

Также после эмиттерного повторителя желательно поставить схему с гистерезисом. В данном случае я поставил электромагнитное реле.

Схему можно запускать просто включением питания или кнопкой.

Если нормально разомкнутый контакт реле завести так, как нарисовано пунктиром, то получим циклическое реле.

Выдержка с резистором 270 ком и конденсатором 1000 мкф получилась чуть больше 9 минут.

С конденсатором 470 мкф порядка 6 минут.

С конденсатором 47 мкф примерно 25 сек.

С конденсаторами большей емкости схема работала нестабильно, хотя вполне вероятно мне попались просто некачественные конденсаторы.

Для получения гистерезиса вместо электромеханического реле пробовал использовать триггер Шмидта.

Величина гистерезиса зависит от отношения резисторов R8/R12. У меня получился гистерезис 1 вольт. Для подключения исполнительного устройства на выход можно подключить эту схему.

Если нет в наличии переменного времязадающего резистора нужной величины, то вместо него можно поставить схему стабилизатора тока. При этом величина переменного резистора может быть любой в пределах 1 – 100 ком. Резистор R1 должен иметь величину примерно в десять раз меньшую, чем переменный резистор. Схема со стабилизатором тока работает даже стабильнее, чем просто с переменный резистором.

Эту схему можно применить в любом таймере, что рассматриваются здесь.

Вторая схема реле времени сути циклический генератор выдающий импульсы через заданное время. Сделана по всем известной схеме с применением однопереходного транзистора. Просто здесь стоит его эквивалент сделанный на биполярных транзисторах.

Схема запускается включением питания, хотя можно поставить кнопку параллельно времязадающему конденсатору.

Выдержка с резистором R1 равным 2,5 мегома и с конденсатором 500 мкф примерно 20 минут.

Резистор R1 и конденсатор С1 можно менять в широких пределах.

При испытании получилось 2,5 мегома и 10 мкф выдержка 25 сек.

560 ком и 500 мкф выдержка была 4 мин.

Если на выходе поставить тиристор хотя бы КУ101, то получится не циклический таймер, а просто таймер заданного времени. Как выше писал, я решил делать только на биполярных транзисторах, поэтому и тиристор сделал на его транзисторном эквиваленте. Только нужно помнить, что максимальный ток такого тиристора довольно маленький и определяется максимальным током базы примененных транзисторов. Схема запускается так же, что и выше.

Если нужен алгоритм, что при нажатии кнопки пусть через 10 минут должна загореться лампочка на 1 минуту, то таймеры нужно включить последовательно и тогда первый таймер запустит второй. Если выдержка по времени нужна не более нескольких секунд, то её можно сделать просто по схеме ждущего мультивибратора. Длительность импульса зависит от R3, С1

При данных на схеме длительность порядка 15 секунд

Тогда можно сделать хотя бы так. Берем первую схему с триггером Шмидта и подключаем последнюю схему, а к ней схему на транзисторе для исполнительного устройства.

В принципе такое можно сделать и с другими схемами. Можно подключить даже две одинаковые схемы.

Передать на десять метров.

Еще одна задача когда просто хочется попробовать передать что либо по радио хотя бы на несколько метров для начала. Понятно, что нужно купить радиомодули, подать на них питание, подключить антенну и вперед, но это потом, а для начала просто хочется посмотреть, что это такое.

Обычно основная трудность с приемником. С передатчиком как то легче, поэтому решил взять схему самого простого приемника и попробовать. Схема приемника до безобразия простая. Конечно её я не сам придумал. Это по сути схема сверхрегенератора В.Т. Полякова из ж. Радио 2002 год номер 3.

Транзистор работает в барьерном режиме. Частота суперизации задается резистором R1 и конденсатором С3. У меня схема заработала сразу. Признаком работоспособности схемы является наличие импульсов суперизации на эмиттере транзистора. У меня она получилась 100 кгц.

Частота, на которой работает приемник зависит от L1 и С2. Я выбрал частоту 75 мгц. Почему именно её, напишу ниже. Частоту можно измерить частотомером, предварительно отпаяв конденсатор С3 от общего провода. В моем случае при сердечнике из карбонильного железа и без конденсатора С2 приемник перекрывает радиовещательный диапазон и в последствии можно будет попробовать принять вещалки. Без конденсатора и с латунным сердечником приемник перестраивается в пределах 120 – 150 мгц. Нужно будет попробовать авиа принять. Частоту также можно проконтролировать с помощью вещательного приемника отпаяв конденсатор С3

Еще одна задача когда просто хочется попробовать передать что либо по радио хотя бы на несколько метров для начала. Понятно, что нужно купить радиомодули, подать на них питание, подключить антенну и вперед, но это потом, а для начала просто хочется посмотреть, что это такое.

Обычно основная трудность с приемником. С передатчиком как то легче, поэтому решил взять схему самого простого приемника и попробовать. Схема приемника до безобразия простая. Конечно её я не сам придумал. Это по сути схема сверхрегенератора В.Т. Полякова из ж. Радио 2002 год номер 3.

Транзистор работает в барьерном режиме. Частота суперизации задается резистором R1 и конденсатором С3. У меня схема заработала сразу. Признаком работоспособности схемы является наличие импульсов суперизации на эмиттере транзистора. У меня она получилась 100 кгц.

Частота, на которой работает приемник зависит от L1 и С2. Я выбрал частоту 75 мгц. Почему именно её, напишу ниже. Частоту можно измерить частотомером, предварительно отпаяв конденсатор С3 от общего провода. В моем случае при сердечнике из карбонильного железа и без конденсатора С2 приемник перекрывает радиовещательный диапазон и в последствии можно будет попробовать принять вещалки. Без конденсатора и с латунным сердечником приемник перестраивается в пределах 120 – 150 мгц. Нужно будет попробовать авиа принять. Частоту также можно проконтролировать с помощью вещательного приемника отпаяв конденсатор С3

Недостаток этого приемника, это маленькая нагрузочная способность и маленькая величина полезного сигнала, но это уже исправляется с помощью низкочастотных схем, что уже не так сложно, как ВЧ.

Я нагрузил его на схему с общим коллектором, которая заодно является ФНЧ не пропускающий частоту суперизации на вход УНЧ. У меня подавление получилось не совсем полным, но я не стал переделывать ФНЧ, а просто в УНЧ добавил конденсатор «С»

Еще недостаток, но он присущ всем сверхрегенераторам, это изменение частоты настройки при касании рукой антенны, поэтому на входе добавил УВЧ. Данный УВЧ никакого увеличения чувствительности не дает, а только позволяет уменьшить расстройку при касании антенны. Если это не важно, то его можно и не ставить.

На данный приемник можно принимать и аналог и цифру. Сначала попробовал принять цифру.

Кстати в виду маленькой величины полезного сигнала здесь как раз пригодился УНЧ с усилением больше тысячи, схему которого делал раньше.

На выходе УНЧ стоит фиксатор уровня на диоде VD1 и конденсаторе С8. Дальше стоит пороговый элемент. Его можно сделать на транзисторах по схеме триггера Шмита или поставить К561ТЛ1. Я спаял триггер Шмита на двух инверторах. Напряжение срабатывания в моем конкретном случае лучше всего сделать 1,5 вольта, т.к. амплитуда импульсов на выходе УНЧ у меня получилась порядка 3 вольта. С выхода триггера Шмидта сигнал поступает на дешифратор или на логике или на МК. У меня на логике, но здесь я про него не пишу, т.к. в статье как задумано описывается применение биполярных транзисторов, да и схемы я уже «замучился» рисовать. Если дешифратор с частотным разделением, то понятно, что никакого триггера Шмита не нужно, а с УНЧ сигнал подавать на канальные фильтры которые кстати тоже можно сделать на транзисторах. Если хватит терпения, то здесь про них напишу, но думаю терпения уже не хватит.

Теперь передатчик для передачи цифры. Схема стандартная. Задающий генератор на кварце с основной гармоникой 25 мгц. Такие стоят в сетевых карточках. В более старых карточках стоят кварцы на 20 мгц. Тогда приемник нужно делать на 60 мгц. В нем можно попробовать увеличить конденсатор С3 в контуре, а лучше намотать катушку с большим количеством витков. Думаю сделать нужно 8 витков с отводом от третьего витка.

Кварц возбуждается на третьей гармонике. Дальше идет усилитель, который коммутируется цифровым сигналом с помощью транзистора VT3.

Не забыть расположить катушки задающего генератора и усилителя под углом 90 градусов по отношению друг к другу.

Особой дальности я не добивался, т.к. не было такой цели. С антеннами на приемнике и передатчике по 10 см в пределах квартиры работает нормально.

На этом с цифровым закончил и решил попробовать с аналогом.

Схема для приема аналога практически такая же, только снизил усиление УНЧ, а на выходе поставил составной эмиттерный повторитель, что испытывал выше. Он даже маленький динамик тянет, но я на наушник 16 ом пробовал.

Для начала отпаял конденсатор С3 и попробовал принять вещалки в диапазоне 100 – 108 мгц

В принципе принимается, но качество звучания широкополосной ЧМ конечно маленькое с подобным приемником. Ввернул латунный сердечник и попытался принять авиа, но вероятно у нас здесь ничего нет или мне не хватило терпения, поэтому стал делать передатчик для передачи голоса.

Схема передатчика отличается от предыдущей только схемой модулятора. Модулятор, это по сути усилитель с эмиттерным повторителем на выходе, а от него питается выходной каскад передатчика. Напряжение на выходе эмиттерного повторителя с помощью резистора R4 нужно установить в данном случае чуть меньше четырех вольт. На вход можно поставить микрофон, но я просто подал звуковой сигнал с линейного выхода компьютера и слушал через приемник.

Большой дальности я не добивался. По сути это были просто эксперименты, но если в передатчике модулятор сделать с модуляционным трансформатором, то дальность будет больше. Схему я привожу, но без элементов. Для данного приемника я такой не делал. Такой я раньше пробовал с приемником на 27 мгц и он у меня с тех пор на столе валяется. В нем еще и антенна включается через удлиняющую катушку.

Понятно, что можно еще напряжение питания увеличить.

Заглушить радио на десять метров.

Тоже часто на форуме спрашивают как сделать простейшую глушилку.

Представляет из себя генератор ВЧ перестраиваемый с помощью варикапов в полосе частот FM диапазона. На варикапы подается пилообразное напряжение. Схема пили такая же, как описывалась в таймерах на аналоге однопереходного транзистора. Для перестройки в данном диапазоне у меня получилось, что нужно подавать пилу с амплитудой от одного до четырех вольт. Нижняя граница устанавливается резистором R4, а верхняя резистором R3. Питание выбрал 9 вольт.

В качестве варикапов поставил два диода КД104А в параллель.

Резистором R5 устанавливается ток транзистора VT3. Чем он больше, тем дальность больше. Я установил 30 ма. Можно поставить два транзистора в параллель и увеличить ток до уровня 50 – 100 ма. Тогда дальность возрастет. Возможно и больше можно, только при увеличении тока нужно контролировать температуру транзистора. У меня не хватило терпения это попробовать, хотя раньше транзисторы в параллель часто ставил. С антенной 40 см нормально глушит по квартире. Антенну лучше сделать 1 метр.

Катушка намотана на каркасе диаметром 6 мм. Количество витков 2+5

Шаг намотки 1 мм. Диаметр провода не критичен. У меня 0,45 мм

В катушку заворачивается сердечник из карбонильного железа. При настройке просто с помощью него устанавливают пределы качания частоты.

Если карбонильного сердечника нет, то можно применить латунный (медный, алюминиевый). Просто увеличить количество витков катушки. Думаю нужно намотать 3+6 витков.

В принципе подобную схему можно сделать на каком либо мощном СВЧ транзисторе и думаю она километр заглушит, но пробовать не стал. Так вообще писанина не закончится.

Интересно, кто нибудь до этого места дочитал мою писанину?

Как уже в начале писал, ничего нового я не придумывал. Просто брал известные схемы и проверял их работоспособность, что бы точно удостовериться, что все работает, и что бы подобного вопроса не возникало у тех, кто захочет их повторить.

Двухуровневый индикатор напряжения

Такое устройство можно использовать. например, для индикации “истощения” батареи питания либо индикации уровня воспроизводимого сигнала в бытовом магнитофоне. Макет индикатора позволит продемонстрировать принцип его работы.

Рис. 5. Схема двухуровневого индикатора напряжения.

В нижнем по схеме положении движка переменного резистора R1 оба транзистора закрыты, светодиоды HL1, HL2 погашены. При перемещении движкарезистора вверх, напряжение на нем увеличивается. Когда оно достигнет напряжения открывания транзистора VТ1 вспыхнет светодиод HL1

Если продолжать перемещать движок. наступит момент, когда вслед за диодом VD1 откроется транзистор VТ2. Вспыхнет и светодиод HL2. Иными словами, малое напряжение на входе индикатора вызывает свечение только светодиода HL1 а большее обоих светодиодов.

Плавно уменьшая входное напряжение переменным резистором, заметим что вначале гаснет светодиод HL2, а затем — HL1. Яркость светодиодов зависит от ограничительных резисторов R3 и R6 при увеличении их сопротивлений яркость падает.

Чтобы подключить индикатор к реальному устройству, нужно отсоединить верхний по схеме вывод переменного резистора от плюсового провода источника питания и подать контролируемое напряжение на крайние выводы этого резистора. Перемещением его движка подбирают порог срабатывания индикатора.

При контроле только напряжения источника питания допустимо установить на месте HL2 светодиод зеленого свечения АЛ307Г.

Схемы включения операционных усилителей

Схемы включения операционных усилителей могут быть весьма разнообразны поэтому мне врятля удастся рассказать о каждой но я постараюсь рассмотреть основные.

Компаратор на ОУ

Формулы для компараторной схемы будут следующие:

Т.е. в результате будет напряжение соответствующее логической единице.

Т.е. в результате будет напряжение соответствующее логическому нулю.

Схема компаратора обладает высоким входным сопротивлением (импедансом) и низким выходным.

Рассмотрим для начала вот такую схему включения операционника в режиме компаратора. Эта схема включения лишена обратной связи. Такие схемы применяются в цифровой схемотехнике когда нужно оценить сигналы на входе, выяснить какой больше и выдать результат в цифровой форме. В итоге на выходе будет логическая 1 или логический ноль (к примеру 5В это 1 а 0В это ноль).

Допустим напряжение стабилизации стабилитрона 5В, на вход один мы приложили 3В а к входу 2 мы приложили 1В. Далее в компараторе происходит следующее, напряжение на прямом входе 1 используется как есть (просто потому что это неинвертирующий вход) а напряжение на инверсном входе 2 инвертируется. В результате где было 3В так и остается 3В а где был 1В будет -1В.

В результате 3В-1В =2В, но благодаря коэффициенту усиления операционника на выход пойдет напряжение равное напряжению источника питания, т.е. порядка 15В. Но стабилитрон отработает и на выход пойдет 5В что соответствует логической единице.

Теперь представили, что на вход 2 мы кинули 3В а на вход 1 приложили 1В. Операционник все это прожует, прямой вход оставит без изменений, а инверсный (инвертирующий) изменит на противоположный из 3В сделает -3В.

В результате 1В-3В=-2В, но согласно логике работы на выход пойдет минус источника питания т.е. -15В. Но у нас стоит стабилитрон и он это не пропустит и на выходе у нас будет величина близкая нулю. Это и будет логический ноль для цифровой схемы.

Триггер Шмитта на ОУ

Чуть ранее мы рассматривали такую схему включения ОУ как компаратор. В компараторе сравниваются два напряжения на входе и выдается результат на выходе. Но чтобы сравнивать входное напряжение с нулем нужно воспользоваться схемой представленной чуть выше.

Здесь сигнал подается на инвертирующий вход а прямой вход посажен на землю, на ноль.

Если на входе у нас напряжение больше нуля то на выходе будем иметь -15В. Если напряжение меньше нуля то на выходе будет+15В.

Но что случится если мы захотим подать напряжение равное нулю? Такое напряжение никогда не получится сделать, ведь идеального нуля не бывает и сигнал на входе хоть на доли микровольт но обязательно будет меняться в ту или другую сторону. В результате на выходе будут полный хаос, выходное напряжение будет многократно скакать максимума до минимума что на практике совершенно не удобно.

Для избавления от подобного хаоса вводит гистерезист — это некий зазор в пределах которого сигнал на выходе не будет меняться.

Этот зазор позволяет реализовать данная схема посредством положительной обратной связи.

Представим, что на вход мы подали 5В , на выходе в первое мгновение получится сигнал напряжением в -15В. Далее начинает отрабатывать положительная обратная связь. Обратная связь образует делитель напряжения в результате чего на прямом входе операционника появится напряжение -1,36В.

На инверсном входе у нас сигнал более положительный поэтому операционный усилитель отработает следующим образом. Внутри него сигнал в 5В инвертируется и становится -5В, далее два сигнала складываются и получается отрицательное значение. Отрицательное значение благодаря коэффициенту усиления станет -15В. Сигнал на выходе не изменится пока сигнал на входе не опустится менее -1,36В.

Пусть сигнал на входе изменился и стал -2В. В нутрях это -2В инвертируется и станет +2В, а -1,36В как был так и останется. Далее все это складывается и получается положительное значение которое на выходе превратится в +15В. На прямом входе значение -1,36В благодаря обратной связи превратится в +1,36В. Теперь чтобы изменить значение на выходе на противоположное нужно подать сигнал более 1,36В.

Таким образом у нас появилась зона с нулевой чувствительностью с диапазоном от -1,36В до +1,36В. Такая зона нечувствительности носит название гистерезис.

Повторитель

Наиболее простой обладатель отрицательной обратной связи это повторитель.

Повторитель выдает на выходе то напряжение, которое было подано на его вход. Казалось бы для чего это нужно ведь от этого ничего не меняется. Но в этом есть смысл, ведь вспомним свойство операционника, он обладает высоким входным сопротивлением и низким выходным. В схемах повторители выступают в роли буфера, который оберегает от перегрузок хилые выходы.

Чтобы понять как он работает отмотаете чуток назад, там где мы обсуждали отрицательную обратную связь. Там я упоминал, что в случае с отрицательной обратной связью операционник всеми возможными способами стремится к равному потенциалу по своим входам. Для этого он подстраивает напряжение на своем выходе так, чтобы разность потенциалов на его входах равнялась нулю.

Так допустим на входе у нас 1В. Чтобы потенциалы на входах были раны на инвертирующем входе должен быть также 1В. На то он и повторитель.

Неинвертирующий усилитель

Схема неинвертирующего усилителя очень похожа на схему повторителя, только здесь обратная связь представлена делителем напряжения и посажена на землю.

Посмотрим как все это работает. Допустим на вход подано 5В, резистор R1 = 10Ом, резистор R2 = 10Ом. Чтобы напряжение на входах были равны, операционник вынужден поднять напряжение на выходе так, чтобы потенциал на инверсном входе сравнялся с прямым. В данном случае делитель напряжения делит пополам, получается, что напряжение на выходе должно быть в два раза больше напряжения на входе.

Вообще чтобы применять эту схему включения даже не нужно ничего ворошить в голове, достаточно воспользоваться формулой, где достаточно узнать коэффициент К.

Инвертирующий усилитель

И сейчас мы рассмотрим работу такой схемы включения как инвертирующий усилитель. Для инвертирующего усилителя есть такие формулы:

Инвертирующий усилитель позволяет усиливать сигнал одновременно инвертируя (меняя знак ) его . Причем коэффициент усиления мы можем задать любой. Этот коэффициент усиления мы формируем посредством отрицательной обратной связи, которая представляет собой делитель напряжения.

Теперь попробуем его в работе, допустим на входе у нас сигнал в 1В, резистор R2 = 100Ом, резистор R1 = 10Ом. Сигнал со входа идет через R1, затем R2 и на выход. Допустим сигнал на выходе невероятным образом стал 0В. Рассчитаем делитель напряжения.

1В/110=Х/100, отсюда Х = 0,91В

Получается что в точке А потенциал равен 0,91В, но это противоречит правилу операционного усилителя. Ведь операционник стремится уравнять потенциалы на своих входах. Поэтому потенциал в точке А будет равен нулю и равен потенциалу в точке B.

Как сделать так чтобы на входе был 1В а в точке А был 0В?

Для этого нужно уменьшать напряжение на выходе. И в результате мы получаем

К сожалению инвертирующий усилитель обладает одним явным недостатком — низким входным сопротивлением, которое равняется резистору R1.

Трехуровневый индикатор напряжения

Он выдает световые сигналы по принципу меньше нормы — норма — больше нормы. Для этого в индикаторе использованы два светодиода красно го свечения и один — зеленого.

Рис. 6. Трехуровневый индикатор напряжения.

При некотором напряжении на движке переменного резистора R1 (напряжение в норме) оба транзистора закрыты и (работает) только зеленый светодиод HL3. Перемещение движка резистора вверх по схеме приводит к увеличению напряжения (больше нормы) на нем открывается транзистор VТ1.

Светодиод HL3 гаснет, а HL1 зажигается. Если движок перемещать вниз и уменьшать таким образом напряжение на нем (‘меньше нормы”) транзистор VТ1 закроется, а VТ2 откроется. Будет наблюдаться такая картина: вначале погаснет светодиод HL1, затем зажжется и вскоре погаснет HL3 и в заключение вспыхнет HL2.

Из-за низкой чувствительности индикатора получается плавный переход от погасания одного светодиода к зажиганию другого еще не погас полностью например, HL1, а уже зажигается HL3.

Интегрированные или внешние резисторы подстройки усиления?

На рисунках 2 и 3 показаны конфигурации измерения тока на стороне низкого и высокого напряжений, в которых используются токовые усилители с интегрированными резисторами для настройки усиления. Такие интегрированные резисторы предлагают целый ряд конструктивных преимуществ, в том числе — упрощение конструкции, уменьшение количества компонентов платы и повышенную точность усиления с лазерной подгонкой. Один из основных недостатков таких усилителей заключается в том, что усиление постоянное и устанавливается на заводе. Это не составит проблемы, если настройка усиления подходит для данного применения. Однако в случае, если требуется особый коэффициент усиления, поскольку значение шунтового резистора было выбрано в первую очередь для соответствия другим критериям, предпочтительнее выбирать операционный усилитель в сочетании с дискретными резисторами.

На рис. 4 показана схема усилителя для измерений тока на стороне высокого напряжения на основе операционного усилителя MCP6H01 производства Microchip Technology с дискретными настройками коэффициента усиления настроечными резисторами.

Рис. 4. Измерение тока на стороне высокого напряжения с использованием дискретных резисторов и операционного усилителя

В этой схеме коэффициент усиления усилителя задается отношением R2 к R1. Также обратите внимание, что R1* = R1, R2* = R2, и что номинал токового шунтового резистора RSEN должен быть во много раз меньше, чем R1 или R2. Обычно это не проблема, потому что номинал токового шунтового резистора обычно составляет порядка миллиом или даже долей миллиом для схем с очень высоким током.

Формулы на рис. 4 дают понять, что использование операционного усилителя и дискретных резисторов требует больших знаний о параметрах компонентов, чем при использовании токовых усилителей с задающими усиление интегрированными резисторами.

Триггер Шмитта

Как известно это устройство ис пользуется обычно для преобразования медленно изменяющегося напряжения в сигнал прямоугольной формыКогда движок переменного резистора R1 находится в нижнем по схеме положении транзистор VТ1 закрыт.

Напряжение на его коллекторе высокое, в результате транзистор VТ2 оказывается открытым а значит, светодиод HL1 зажжен На резисторе R3 образуется падение напряжения.

Рис. 7. Простой триггер Шмитта на двух транзисторах.

Медленно перемещая движок переменного резистора вверх по схеме, удастся достичь момента когда произойдет скачкообразное открывание транзистора VТ1 и закрывание VТ2 Это случится при превышении напряжения на базе VТ1 падения напряжения на резисторе R3.

Светодиод погаснет. Если после этого перемещать движок вниз триггер возвратится в первоначальное положение — вспыхнет светодиод Это произойдет при напряжении на движке меньшем чем напряжение выключения светодиода.

Схемы каскадных УНЧ на биполярных транзисторах

На рис. 8 и 9 показаны схемы каскодных УНЧ на биполярных транзисторах. Такие усилители имеют довольно высокий коэффициент усиления Ку. Усилитель на рис. 8 имеет Ку=5 в полосе частот от 30 Гц до 120 кГц [МК 2/86-15]. УНЧ по схеме на рис. 9 при коэффициенте гармоник менее 1% имеет коэффициент усиления 100 [РЛ 3/99-10].

Рис. 8. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 5.

Рис. 9. Каскадный УНЧ на двух транзисторах с коэффициентом усиления = 100.

LM358 схема включения: преобразователь напряжение – частота

И напоследок схема которую можно использовать в качестве аналого-цифрового преобразователя. Нужно только подсчитать период или частоту выходных сигналов.

  • C1 – 0,047 мкФ;
  • DA1 – LM358;
  • R1 – 100 кОм;
  • R2 – 50 кОм;
  • R3,R4,R5 – 51 кОм;
  • R6 — 100 кОм;
  • R7 — 10 кОм.

26 thoughts on “ LM358 схема включения ”

Наверное — это самый распространенный операционник. Как раз тот случай, когда усредненные характеристики детали, делают ее востребованной в любых стандартных устройствах. Возможность сносно работать в различных режимах позволяет использовать в УМЗЧ, параметрических и импульсных стабилизаторах, генераторах, модуляторах, регуляторах и т.д. Из-за надежности, обусловленной простотой, используется и в бытовой, и в промышленной, и, даже, военной технике.

Востребованной ее делает крайне низкая цена, я их брал по 3,5 руб. Взял сотню, теперь леплю эти «семечки» куда только можно. Кроме звукоусиливающей аппаратуры, конечно, где посредственные частотные и скоростные параметры накладывают серьезные ограничения на использование LM358. Что любопытно, у этого простенького ОУ довольно большое допустимое синфазное напряжение, что позволяет использовать его в качестве усилителя напряжения с шунта в «горячем» проводе источника питания с выходным напряжением до 27 вольт. Как на девятом рисунке в публикации. Только с напряжением смещения у него не очень, поэтому приходится сопротивление шунтов выбирать побольше, компенсируя низкую точность операционного усилителя. Но что тут поделать? Инструментальный усилитель за 3 рубля не купишь…

Можно и в звуковых усилителях использовать, но, не в виде предварительного каскада усиления, конечно, тут полностью поддерживаю. Ресиверы, вообще одно из немногих устройств, в каскады усиления которых, современные технологии не добрались. Понимаю, что сейчас кругом МП3, но после качественного ЦАП, микросхемам делать уже нечего. Если мы говорим о верном Hi-Fi (High-Fidelity) стерео-звуке, конечно. В аппаратуре такого уровня, даже применение вакуумных радиоламп до сих пор актуально и востребовано.

Не подскажете пару радиосхем на вакуумных лампах. Лампы есть, а вот схем не могу найти, даже в интернете. Помню, в детстве, был у меня катушечный магнитофон «Астра», так в нём целых три лампы стояло, звук был громкий, но качество конечно оставляло желать лучшего.

Качество звука было неважным — из-за плохого качества магнитных носителей и звукоснимателей, а не из-за усиления НЧ! Усилитель только подчеркивал эти недостатки. Плюс «звукоизлучатели» вносили свою лепту. Да и усилитель-усилителю рознь, несмотря на использованные в нем элементы. Многие старые магнитофоны, по вышеуказанной причине, оснащались изначально некачественным, упрощенным выходным каскадом. А какие у вас лампы? Их разнообразие побольше, чем у транзисторов, особенно биполярных. Схемы найти трудно, но не невозможно, сложнее — под определенные лампы, особенно, если это две ГУ-50.

Схемы на радиолампах в большом количестве имеются в книгах по радиоэлектронике, например есть знаменитая книга «Юный радиолюбитель» авторы Борисов, В.Г. https://tehosnova.ru/knigi/elektronika/borisov_vg_uniy_radiolubitel_7_izd_p.zip

не прикалывайтесь, в стандарт hi-fi влазят почти все современные звуковоспроизводящие устройства)

Интересно, что цоколи большинства сдвоенных (стерео

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]