Релейные схемы используются в системах авторегулирования: для поддержания заданной температуры, освещенности, влажности и т.д. Подобные схемы, как правило, похожи и в качестве обязательных узлов содержат датчик, пороговую схему и исполнительное или индикаторное устройство (см. список литературы).
Релейные схемы реагируют на превышение контролируемого параметра над заданным (установленным) уровнем и включают исполнительное устройство (реле, электродвигатель, тот или иной прибор).
Также возможно оповещение звуковым или световым сигналом о факте выхода контролируемого параметра за пределы допустимого уровня.
Термореле на транзисторах
Термореле (рис. 1) выполнено на основе триггера Шмитта. В качестве датчика температуры используется терморезистор (резистор, сопротивление которого зависит от температуры).
Потенциометр R1 устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. Его регулировкой добиваются срабатывания исполнительного устройства (реле К1) при изменении сопротивления терморезистора.
Рис. 1. Схема простого термореле на транзисторах.
В качестве нагрузки в этой и других схемах этой главы может быть использовано не только реле, но и слаботочная лампа накаливания.
Можно включить светодиод с последовательным токоограничивающим резистором величиной 330…620 Ом, генератор звуковых колебаний, электронную сирену и т.д.
При использовании реле контакты последнего могут включать любую электрически изолированную от цепи датчика нагрузку: нагревательный элемент либо, напротив, вентилятор.
Для защиты выходного транзистора от импульсов напряжения, возникающих при коммутации обмотки реле (индуктивной нагрузки), необходимо включать параллельно обмотке реле полупроводниковый диод.
Так, на рис. 1 анод диода должен быть соединен с нижним по схеме выводом обмотки реле, катод — с шиной питания. Вместо диода с тем же результатом может быть подключен стабилитрон или конденсатор.
● Проект 12: Управляем реле через транзистор
В этом эксперименте мы познакомимся с реле, с помощью которого с Arduino можно управлять мощной нагрузкой не только постоянного, но и переменного тока. Необходимые компоненты: • контроллер Arduino UNO R3; • плата для прототипирования; • биполярный транзистор С945; • диод 1N4004; • реле; • провода папа-папа. • провода папа-мама. Реле – это электрически управляемый, механический переключатель, имеет две раздельные цепи: цепь управления, представленная контактами (А1, А2), и управляемая цепь, контакты 1, 2, 3 (см. рис. 12.1).
Цепи никак не связаны между собой. Между контактами А1 и А2 установлен металлический сердечник, при протекании тока по которому к нему притягивается подвижный якорь (2). Контакты же 1 и 3 неподвижны. Стоит отметить, что якорь подпружинен, и пока мы не пропустим ток через сердечник, якорь будет прижатым к контакту 3. При подаче тока, как уже говорилось, сердечник превращается в электромагнит и притягивается к контакту 1. При обесточивании пружина снова возвращает якорь к контакту 3. При подключении реле к Arduino контакт микроконтроллера не может обеспечить мощность, необходимую для нормальной работы катушки. Поэтому следует усилить ток – поставить транзистор. Для усиления удобнее применять n-p-n-транзистор, включенный по схеме ОЭ (см. рис. 12.2). При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1–10 кОм), в любом случае, транзистор будет работать в режиме насыщения. В качестве транзистора может быть любой n-p-n-транзистор. Коэффициент усиления практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор–эмиттер (напряжение, которым запитывается нагрузка).
Для включения реле, подключенного по схеме с ОЭ, на вывод Arduino необходимо подать 1, для выключения – 0. Подключим реле к плате Arduino по схеме на рис. 12.3 и напишем скетч управления реле. Каждые 5 секунд реле будет переключаться (включаться/выключаться). При переключении реле раздается характерный щелчок. Содержимое скетча показано в листинге 12.1.
int relayPin = 10; // подключение к выводу D10 Arduino void setup() { pinMode(relayPin, OUTPUT); // настроить вывод как выход (OUTPUT) } // функция выполняется циклически бесконечное число раз void loop() { digitalWrite(relayPin, HIGH); // включить реле delay(5000); digitalWrite(relayPin, LOW); // выключить реле delay(5000); }
Порядок подключения: 1. Подключаем элементы к плате Arduino по схеме на рис. 12.3. 2. Загружаем в плату Arduino скетч из листинга 12.1. 3. Каждые 5 секунд происходит щелчок переключения реле если подключить контакты реле, например в разрыв подключенной к сети 220 В патрона с лампой накаливания, то увидим процесс включения/выключения лампы накаливания раз в 5 секунд (рис. 12.3).
Рис. 12.3
Листинги программ
Простой термоиндикатор
Термореле (рис. 3), или, говоря точнее, термоиндикатор, выполнен по мостовой схеме [ВРЛ 83-24]. Когда мост сбалансирован, ни один из светодиодов не светится. Стоит температуре повыситься, включится один из светодиодов.
Рис. 3. Принципиальная схема простого термо-индикатора на одном транзисторе и светодиодах.
Если температура, напротив, понизится, загорится другой светодиод. Чтобы различать, в какую сторону изменяется температура, для индикации ее повышения можно использовать светодиод красного свечения, а для индикации понижения — светодиод желтого (или зеленого) свечения. Для балансировки схемы вместо резистора R2 лучше включить потенциометр.
Фотореле с двухкаскадным усилителем
Схема фотореле, показанная на рис. 5, содержит двухкаскадный усилитель постоянного тока, выполненный на транзисторах разного типа проводимости.
Рис. 5. Принципиальная схема фотореле с двухкаскадным усилителем.
При изменении электрического сопротивления фотодиода и, соответственно, смещения на базе транзистора VT1, увеличится коллекторный ток выходного транзистора усилителя VT2, и напряжение на резисторе R2 возрастет.
Как только это напряжение превысит напряжение пробоя порогового элемента — полупроводникового стабилитрона VD2, включится оконечный каскад на транзисторе VT3, управляющий работой исполнительного механизма (реле).
Использование в схеме порогового элемента (полупроводникового стабилитрона) повышает четкость срабатывания фотореле.
Pnp транзистор в режиме ключа
Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой.
С чего все начиналось
Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.
Нажали на черную большую пипочку – ток побежал, отжали – получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку – сигнал есть, отжали пипку – сигнала нет.
Транзисторный ключ
Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между “включено” и “выключено” мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.
Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:
Знакомая схемка не так ли? Здесь все элементарно и просто