Расчет сварочного трансформатора на тороидальном сердечнике
Трансформатор является главным узлом сварочного аппарата независимо от его конструкции. При самостоятельном изготовлении этого элемента возникает много вопросов: Как выбрать форму магнитопровода? Какой требуется намоточный провод? Как сделать расчет необходимого количества витков?
Тороидальный трансформатор имеет ряд преимуществ перед трансформаторами другого типа:
- Равномерное распределение обмоток;
- Снижение массы на 20…30 % при сохранении мощности;
- Сниженные токи Х.Х. в 10…20 раз;
- Высокий К.П.Д;
- Уменьшение полей рассеяния;
- Низкий уровень шума.
Если приложить определенные усилия для создания тороидального трансформатора своими руками, то можно получить свой уникальный набор характеристик устройства, которое удовлетворит все потребности при работе со сваркой. И даже более того – можно учесть текущие реалии нашей действительности такие как, например пониженное напряжение в сети вашего дома.
Используя формулы и методы, приведенные в нашей статье, вы получите практическое пособие по расчету сварочного трансформатора на тороидальном сердечнике.
Методика расчета – пошаговая инструкция
Сам же расчет тороидального трансформатора разделяется на две части:
- Непосредственно рассчитать мощность тороидального сердечника, чтобы ее определить вы можете получить, при наличии у вас конкретного сердечника, или заданной мощности, то определить размеры будущего трансформатора.
- Расчет собственно электрической части, которая включает в себя количество витков в обмотках, а также какое сечение будет применяться в обмотках и материал провода.
Расчет сердечника
Его мы произведем по формуле, которая уже включает в себя константы, для упрощения понимания его результатов. Дальше останется подставить в ниже приведенную формулу только переменные значения, а именно:
Рекомендуем! Как сделать сварочные электроды своими руками
«P=1,9*Sc*So», где:
- P – это мощность, которую возможно получить, применяя сердечник с таким габаритными размерами
- 1,9 – результат математических действий над всеми константами для данного вида трансформаторов
- Sc- площадь сердечника, единица измерения сантиметры квадратные
- So – площадь отверстия в теле сердечника, в «кв. см.»
Формулы расчета площади сечения тороидального сердечника
Если сделанный трансформатор будет иметь основное назначение – сварка, то размеры его сердечника должны быть адекватными, иначе полученной мощности устройства будет не достаточно для выполнения своих функций. Для примера возьмем следующие значения и применив калькулятор вычислим. «P=1,9*70*70=9310 Ватт»
Определим количество витков первичной обмотки
В первую очередь рассмотрим расчет с единой первичной обмоткой, без регулировки. Для этого сначала выясним, сколько витков обмотки должен иметь тороидальный трансформатор для получения 1 вольта напряжения. Применим следующую формулу. К=35/ Sc, где:
- K – количество витков на 1 вольт напряжения.
- 35 – это константа, которая одинакова для всех типов тороидальных сердечников.
- Sc- площадь сердечника, единица измерения сантиметры квадратные.
Таким образом, если у нас имеется сердечник площадью 70 «кв. см.», то подставив значения в формулу, получим следующую ситуацию. «K=35/70=0,5» витка на каждый вольт, и соответственно объём первичной обмотки узнаем, применив соответствующую формулу. «W1=U1*K», где:
- W1- количество витков в первой обмотке.
- U1 – необходимое напряжение в этой точке.
- K – количество витков на 1 вольт напряжения.
«W1=220*0,5=110» – витков.С учетом того, что мы проводим вычисления для сварочного трансформатора, то примем за рабочее напряжение вторичной равное 35 вольт, тогда исходя из аналогичной формулы, получим.
«W2=35*0,5=17,5» – витков.
Расчет сечения применяемых проводов
Чтобы рассчитать необходимые сечения нужно понять какой ток будет через них протекать, это единственный параметр который влияет на толщину используемого материала, итак, вычисление величины тока в обмотках трансформатора: «I пер.=9310 Ватт/220 Вольт=42.3 Ампера»С вторичной обмоткой несколько сложнее, все должно опираться на напряжение дуги и ток сварки.
«I свар.=(29 Вольт-14)/0.05=300 Ампер», где 29 вольт среднее значение дуги сварки. Теперь проверяем, возможна ли такая мощность у нашего устройства 300 Ампер*29 Вольт=8700 Ватт.
Это значение вполне укладывается в мощность, которой обладает тороидальный трансформатор, рассчитываемый нами, поэтому 300 Ампер, считаем током вторичной обмотки. Проведя эти нехитрые вычисления, для которых даже не всегда нужен калькулятор, можно перейти к определению сечения проводов и их материала.
Из руководящих документов таких как, например «ПУЭ», известно, что для продолжительной работы требуется 1 квадратный миллиметр сечения меди на каждые 5 ампер тока, а при использовании алюминия 2 ампера. Исходя из этих данных, вычисляем сечение проводов в устройстве для меди:
- Первичная обмотка=42,3/5=8,46 кв. мм, ближайший стандарт сечения это 10.
- Вторичная обмотка=300/5=60 кв. мм, выбираем следующее по стандарту сечение в сторону увеличения это 70.
Применяем условие продолжительности нагрузки 40 процентов, так как никто не работает все время под нагрузкой. В этом случае сечение можно уменьшить в два раза, тогда получаем:
- 8,46/2=4,23 ближайший стандарт сечения -6 кв. мм.
- 60/2=30 следующий стандарт 35 кв. мм.
Как упростить задачу по намотке витков на сердечник
Зная как создать трансформатор во всех подробностях и всеми данными, остается перейти к практической работе, но намотка витков представляет собой достаточно трудоемкий процесс, требующий особой концентрации внимания. Правильность намотки также имеет значение и напрямую влияет на характеристики устройства, которое в итоге получится.
Но для таких случаев в помощь людям существует специальное устройство, станок для намотки тороидальных трансформаторов, цена такого приспособления не высока, но купить его не просто, поэтому на рынке часто встречаются самодельные устройства, и если почитать соответствующую литературу, то можно попробовать сделать этот станок самому.
Самостоятельное изготовление агрегата
Прежде чем приступить к созданию такого агрегата, необходимо подготовить все необходимые инструменты и материалы. Для изготовления более качественной модели может понадобиться даже швейная машинка, прочная игла и обычные спички, но такие детали можно найти практически в каждом доме.
Основным расходным материалом является железо, из него изготавливаются базовые части трансформатора. Для работы понадобится качественная сталь, которая должна быть в форме тора. Не стоит забывать и о хорошем проводе в лаковой изоляции. Надёжная фиксация не может обойтись без клея ПВА и малярного скотча.
Отдельно стоит учесть, что качественная работа обмоток зависит от изоленты на тканевой основе. А также стоит приобрести высококачественный провод в резиновой или силиконовой изоляции. Этот элемент понадобится для надёжного соединения всех концов обмотки.
Подготовка трансформаторной стали
Начинающим мастерам может показаться, что достать базовый элемент конструкции крайне сложно, но на практике всё обстоит совершенно иначе. Дело в том, что даже обычные пункты приёма металла часто располагают неработоспособными стабилизаторами напряжения. В советский период они были очень распространены, так как использовались в чёрно-белых телевизорах, что продлевало работоспособность кинескопов.
Исправность такого устройства совершенно не имеет значения, так как особой ценностью обладают только тороидальные трансформаторы, которые расположены во внутреннем отсеке стабилизатора. Именно эта часть используется мастерами в качестве основы всей конструкции.
На пути к изъятию трансформаторов всегда лежит обмотка, изготовленная из алюминиевого провода. Не стоит забывать о том, что сердечник тоже нуждается в подготовительных работах. Мастер должен максимально округлить острые края этой детали, так как в процессе намотки может повредиться лаковая изоляция. Поверх трансформаторной стали обязательно укладывается изолента на тканевой основе. В этом случае нужен всего один изоляционный слой.
Правила обмотки
Прежде чем приступить к этому виду работы, нужно сделать расчёт тороидального трансформатора по сечению сердечника. Конечно, мастер может использовать специальные онлайн-калькуляторы, которых на просторах интернета существует очень много. Но можно выбрать более простой вариант, где для всех вычислений нужно подготовить только линейку и калькулятор.
Конечно, он может иметь некоторые погрешности, так как расчёт не подразумевает соблюдения всех тех факторов, которые встречаются в природе. Главное, придерживаться правила о том, что итоговая мощность во вторичной катушке не должна превышать аналогичных показателей в первой обмотке.
Когда мастер дошёл до этого этапа и нужно сделать намотку тороидального агрегата, ему стоит быть крайне внимательным, так как этот процесс довольно трудоёмкий. Отличным считается тот вариант, когда есть возможность самостоятельно разобрать магнитопровод, а уже после намотки собрать его.
В противном случае можно прибегнуть к помощи обычного веретена, на которое нужно аккуратно намотать определённое количество заранее подготовленного провода. Только после этого веретено можно пропустить необходимое количество раз сквозь тор, равномерно укладывая витки обмоток. Конечно, на реализацию такой идеи уйдёт достаточно много времени, но результат того стоит.
Стоит отметить, что в стандартных ситуациях мастера проводят дополнительную изоляцию тороидального сердечника от обмоток (даже в том случае, если используется лакированная проволока). Особой популярностью пользуется высококачественный электротехнический картон, который соответствует всем стандартам ГОСТ 2824 . Толщина этого материала находится в пределах 0,8 мм.
Во время работы мастера придерживаются следующей схемы:
- Картон аккуратно наматывается на сердечник с небольшим захватом предыдущего витка. Конец материала обязательно фиксируется киперной лентой либо клеем ПВА.
- Все торцы сердечника должны быть защищены картонными шайбами с небольшими надрезами от 10 до 20 мм, длина шага — 35 мм. Как наружная, так и внутренняя грань обязательно закрывается небольшими полосами. Стоит отметить, что технологические шайбы фиксируются на финишном этапе, а все прорезиненные зубцы загибаются. Поверх всей конструкции наматывается киперная лента.
- Если надрезы были сделаны на самых полосах, тогда должен присутствовать небольшой запас, чтобы добиться большей высоты торца. Все кольца должны быть прикреплены строго по ширине, накладываются они поверх загибов.
- В редких случаях кольца могут быть изготовлены из специальной электротехнической фанеры, толстого текстолита. Уязвимую внутреннюю и внешнюю грань защищают картонными полосами с небольшими загибами по краям. Между первыми витками обмотки и сердечником должен присутствовать небольшой воздушный зазор. Такой подход особенно важен в тех случаях, когда края под проволокой протрутся. Так уязвимая токонесущая часть никогда не коснётся тороидального сердечника. На верхний слой обязательно наматывается киперная лента. В некоторых случаях мастера предпочитают сглаживать внешнее ребро колец, за счёт чего намотка углов идёт плавно.
Если трансформатор обладает повышенной мощностью, тогда медный провод должен быть прямоугольного сечения. Такой подход позволяет сэкономить свободное пространство. Жила обязательно должна быть толстой, чтобы она не плавилась во время того, как по ней проходит большое напряжение.
Расчет сварочного трансформатора на тороидальном сердечнике — Металлы, оборудование, инструкции
Всевозможных схем сварочных агрегатов от простейших и до инверторов существует превеликое множество.
Для создания самодельного сварочного аппарата лучше выбрать простую и высоконадежную схему, которая не содержит сложной и дорогой электроники.
Но в любом случае, кроме схемы, потребуется предварительный расчет сварочного трансформатора. Только после этого можно приступать к его практическому изготовлению.
Схема сварочного трансформатора.
Специфика расчета таких трансформаторов заключается в том, что параметры их компонентов в большинстве случаев подбираются в соответствии с уже имеющимися деталями – чаще всего с данными магнитопровода.
Поэтому стандартные методы расчета, которые разработаны для промышленного трансформатора, для самодельного сварочника не всегда применимы.
Особенно ярко это проявляется при выходе того или иного параметра за стандартные границы.
Выбор максимального значения сварочного тока
Таблица 1. Характеристики сварочных трансформаторов.
Прежде всего, следует определиться, на какое максимальное значение сварочного тока будет рассчитываться трансформатор.
Взаимосвязь между толщиной свариваемых металлов, диаметром электродов и сварочным током показана в таблице 1.
Учитывая, что используя однофазный трансформатор, получить ток более 200 А практически нереально, домашнему мастеру приходится ограничиваться электродами диаметром не более 4 мм. Чаще всего 3 мм.
Следует установить наиболее подходящий верхний предел сварочного тока и наматывать обмотки под соответствующую ему мощность.
При этом следует ясно понимать, что с ее ростом возрастают вес сердечника, сечение и стоимость провода. Кроме того, более мощный трансформатор сильнее греется и быстрее изнашивается.
Да и не каждая сеть выдержит такую нагрузку. Золотая середина – аппарат с выходным током 110-120 А.
Прочие рабочие характеристики
Трёхфазный стержневой трансформатор.
Максимальная величина выходного тока – главная характеристика любого сварочника, но наряду с нею следует определиться и с другими важными параметрами:
- Диапазон регулирования величины выходного тока. В самодельных аппаратах обычно создается ряд ступеней – от 50 А до верхнего предела.
- Напряжение холостого хода. Чем оно выше, тем легче зажечь дугу. Из соображений безопасности не должно превышать 80 В.
- Номинальное выходное напряжение, которое необходимо для устойчивого горения дуги. Для сварки тонких металлов это напряжение должно быть более низким и наоборот.
- Мощность – потребляемая и выходная. Чем меньше их разность, тем выше КПД изготовленного трансформатора, тем он лучше.
- Номинальный рабочий режим характеризует продолжительность непрерывной работы. Для сварочного трансформатора собственного изготовления он не превышает 20-30%. Номинальный режим 20% означает, что из 10 минут рабочего времени можно варить 2 минуты, а остальные 8 трансформатор должен охлаждаться на холостом ходу.
Устройство сердечника трансформатора
В зависимости от формы магнитопровода различают следующие разновидности трансформаторов:
- стержневые;
- броневые;
- тороидальные.
Основные понятия и классификация трансформаторов.
На стержневом трансформаторе обмотки окружают стержни сердечника. На броневом, напротив, магнитопровод частично обхватывает обмотки. В тороидальном обмотки распределяются по магнитопроводу равномерно.
Броневые и стержневые сердечники изготовляются из отдельных тонких, изолированных друг от друга пластин. Материал – трансформаторная сталь. Тороидальные наматываются в виде рулона из ленты, изготовленной из той же трансформаторной стали.
Важнейшей характеристикой любого сердечника является площадь его поперечного сечения. Именно от нее в очень большой степени зависит мощность трансформатора. У стержневого магнитопровода под площадью его поперечного сечения понимают площадь любого из стержней, а у тороидального – тора. У броневого – это площадь сечения его среднего стержня.
КПД трансформаторов стержневого типа выше, чем броневых. Кроме того, у них лучше условия охлаждения обмоток и, следовательно, допустимые плотности тока в обмотках. Поэтому сварочные трансформаторы, как правило, бывают стержневыми.
Но все чаще для его изготовления стараются применить тороидальный сердечник. Дело в том, что масса и габариты такого сварочника почти в полтора раза меньше, чем стержневого при прочих равных параметрах.
Но здесь возникают трудности с его намоткой.
Расчет сварочного трансформатора
Схема намотки сварочного трансформатора.
Поскольку при самостоятельном изготовлении сварочника приходится довольствоваться имеющимися в распоряжении магнитопроводами, производить строгий расчет не имеет смысла.
Чаще всего достоверно неизвестны магнитные свойства и другие характеристики трансформаторной стали. Одной магнитной проницаемости, которую нетрудно определить экспериментально, для точного расчета недостаточно.
Поэтому рациональнее ограничиться приблизительным расчетом.
Сначала производится оценка потребной электрической мощности. Основное мерило здесь – максимальная величина сварочного тока, которая, в свою очередь, определяется наибольшим диаметром электрода (см. таблицу 1). Электрическая мощность сварочника:
Р = Uд * Iм,
где Uд – напряжение горения дуги (обычно берется значение 25 В), Iм – максимальный сварочный ток. Например, для трансформатора, рассчитанного на ток до 150 А, электрическая мощность должна составлять:
Р = 25 В * 150 А = 3750 Вт.
Габаритная мощность трансформатора, зависящая от параметров магнитопровода, должна быть обязательно больше электрической. Именно габаритную мощность способен «потянуть» сердечник. При расчетах в качестве исходной чаще всего используется следующая формула, связывающая габаритную мощность с размерами сердечника:
Sо* Sс = 100 * Рг /(2,22 * Вс * j * f * kо* kc) (см4),
Схема трансформатора с первичной и вторичной обмоткой.
где Sо – площадь окна сердечника, Sс – площадь его поперечного сечения, Рг – габаритная мощность, Вс – магнитная индукция поля в сердечнике, j – плотность тока в проводах обмоток, f – частота переменного тока, kо– коэффициент заполнения окна, kc– коэффициент заполнения сердечника.
Sо и Sс находят прямыми измерениями габаритов сердечника. Например, для стержневого магнитопровода (см. рис. 2) Sо= h * l, Sс= а * b. С достаточной для практического расчета точностью можно считать, что:
- Вс = 1,42 Тл;
- kо= 0,33 для провода круглого и 0,4 – прямоугольного сечения;
- kc = 0,95;
- частота переменного тока в сети – 50 Гц;
- для самодельного трансформатора с номинальным рабочим режимом 20%, допустимая плотность тока в медных обмотках – 8 А/мм2,в алюминиевых – 5 А/мм2,в комбинированных медно-алюминиевых – 6,5 А/мм2.
Если подставить в формулу все эти значения, получается формула, связывающая между собой Sо, Sс и Рг:
Рг = k * Sо* Sс,
где k – коэффициент, значение которого зависит от формы сердечника и материала обмоток. Выглядит она следующим образом:
- если обе обмотки медные – для тороидального трансформатора k = 2,76, для стержневого – 2,47;
- если медно-алюминиевые – для тороидального k = 2,24, для стержневого – 2;
- если обе алюминиевые – для тороидального k = 1,72, для стержневого – 1,54.
Пользуясь последней формулой, можно легко оценить «потянет» ли имеющийся сердечник заданные параметры. Если да, остается рассчитать число витков в каждой из обмоток. Для первичной адаптированная формула выглядит следующим образом:
N1 = 40 * U1 / Sс,
где U1 – напряжение на ней (В).
Тороидальный трансформатор.
https://www..com/watch?v=hi6X6T8iVrs
Для вторичной катушки с учетом КПД трансформатора формула приобретет следующий вид:
N2 = 42 * U2 / Sс,
где U2 – напряжение вторичной обмотки (В). Число витков во вторичной обмотке можно найти и экспериментально – намотать поверх первичной обмотки несколько (лучше 10) витков, измерить на них напряжение, а затем пересчитать – сколько витков нужно для обеспечения необходимого выходного напряжения.
Назначение и действие импульсного трансформатора
Импульсные трансформаторы применяются в системах связи и различных автоматических устройствах. Их основной функцией является внесение изменений в амплитуду и полярность импульсов. Основным условием нормальной работы этих устройств считается минимальное искажение передаваемых ими сигналов.
Принцип действия импульсного трансформатора заключается в следующем: при поступлении на его вход прямоугольных импульсов напряжения с определенным значением, в первичной обмотке происходит постепенное возникновение электрического тока и дальнейшее увеличение его силы. Подобное состояние, в свою очередь, приводит к изменению магнитного поля во вторичной обмотке и появлению электродвижущей силы. В этом случае сигнал практически не искажается, а небольшие потери тока ни на что не влияют.
При выходе трансформатора на проектную мощность, обязательно появляется отрицательная часть импульса. Его воздействие вполне возможно сделать минимальным, путем установки во вторичную обмотку простого диода. В результате, в этом месте импульс также максимально приблизится к прямоугольной конфигурации.
Главным отличием импульсного трансформатора от других аналогичных технических систем считается его исключительно ненасыщенный режим работы. Для изготовления магнитопровода применяется специальный сплав, обеспечивающий высокую пропускную способность магнитного поля.
Расчет сварочного трансформатора на тороидальном сердечнике — Справочник металлиста
Расчет трансформатора с тороидальным магнитопроводом :: АвтоМотоГараж
Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50(72х18). Тороидальный тип: ОЛ70/110-60.
ИСХОДНЫЕ ДАННЫЕ для расчёта трансформатора с тороидальным магнитопроводом:
- напряжение первичной обмотки, U1 = 220 В;
- напряжение вторичной обмотки, U2 = 36 В;
- ток вторичной обмотки, l2 = 4 А;
- внешний диаметр сердечника, D = 110 мм;
- внутренний диаметр сердечника, d = 68 мм;
- высота сердечника, h = 60 мм.
Расчет трансформатора с магнитопроводом типа ШЛ32х50(72х18) показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна.
Приступаем к расчёту трансформатора с магнитопроводом типа ОЛ70/110-60.
Программный (он-лайн) расчет, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже.
Описание вводимых и расчётных полей программы: поле светло-голубого цвета – исходные данные для расчёта, поле жёлтого цвета – данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета – рассчитанное значение.
Формулы и таблицы для ручного расчет трансформатора:
1. Мощность вторичной обмотки;
2. Габаритная мощность трансформатора;
Табл.№1.
Величина Суммарная мощность вторичных обмоток Рвых, [Вт]2-15 15-50 50-150 150-300 300-1000
По сравнению с обычными конструкциями тороидальные трансформаторы имеют ряд существенных преимуществ. При незначительных размерах и массе, они обладают значительно большим коэффициентом полезного действия. Поэтому данные устройства нашли широкое применение в сварочных аппаратах и стабилизаторах напряжения. Большое значение имеет правильный расчет тороидального трансформатора, применительно к конкретным условиям эксплуатации. Существуют различные способы расчетов, позволяющие получить результаты с разной степенью точности. Чаще всего для расчетов используются таблицы. Определение основных параметровПеред началом расчетов необходимо определиться с основными параметрами трансформатора. В первую очередь это касается типа проводов и количества витков, от которых зависит общая длина проводника. Далее нужно сделать правильный выбор сечения, влияющего на показатели выходного тока и мощность устройства. Следует учитывать и тот фактор, что при небольшом количестве витков, первичная обмотка будет нагреваться. Точно такая же ситуация возникает, когда мощность потребителей, включаемых во вторичную обмотку, превышает мощность, отдаваемую трансформатором. В результате перегрева снижается надежность устройства, иногда может произойти воспламенение трансформатора. В качестве примера приводится таблица, с помощью которой можно рассчитать тороидальный трансформатор, работающий при частоте сети 50 Гц. Сердечники устройств могут быть изготовлены из холоднокатаной стали марок Э310-330, толщиной от 0,35 до 0,5 мм. Может применяться и обычная сталь, марок Э340-360, где толщина ленты будет в пределах от 0,05 до 0,1 мм. Условные обозначения в таблице соответствуют:
При наматывании тороидальной катушки используется только наружная и межобмоточная изоляция. Несмотря на ровную укладку обмоточных проводов, толщина намотки по внутреннему диаметру обязательно увеличивается вследствие разницы между наружным и внутренним диаметром сердечника. Поэтому рекомендуется использовать проводники, изоляция которых обладает повышенной механической и электрической прочностью, например, марки ПЭЛШО и ПЭШО, а в некоторых случаях – ПЭВ-2. Для наружной и межобмоточной изоляции чаще всего применяется батистовая лента, лакоткань ЛШСС, толщиной 0,06-0,12 мм, а также триацетатная или фторопластовая пленка, толщиной 0,01-0,02 мм. Формулы для расчета тороидального трансформатораОсновными параметрами для расчета тороидального трансформатора служат напряжение сети питания (Uc), равное 220 В, значение выходного напряжения (Uн) – 24 В, токовая нагрузка (Iн) – 1,8 А. Для определения мощности вторичной обмотки существует формула: Р = Uн х Iн = 24 х 1,8 = 43,2 Вт. Далее определяется габаритная мощность трансформаторного устройства по формуле: Величина коэффициента полезного действия и прочие данные, необходимые для расчетов, выбираются из таблицы, в соответствующей графе и ряде под конкретную габаритную мощность. Следующим этапом будет расчет площади сечения сердечника по формуле: Выбор размеров сердечника осуществляется следующим образом: Ближайшим типом сердечника со стандартными параметрами будет ОЛ50/80-40, с площадью сечения S = 60 мм2, которая должна быть не менее расчетной. Внутренний диаметр сердечника определяется в соответствии с условием, что dc имеет значение большее или равное dc’:
Теперь необходимо определить количество витков в первичной и вторичной обмотках: Поскольку в любом тороиде рассеивание магнитного потока совсем незначительное, падение напряжения в обмотках возможно определить только по их активному сопротивлению. В результате, значение относительной величины падения напряжения в обмотках тороидального трансформатора будет намного меньше, чем в обычных трансформаторах. В связи с этим, потери на сопротивлении вторичной обмотки компенсируются увеличением количества витков примерно на 3%. Расчет будет выглядеть следующим образом: W1-2=133 х 1,03=137 витков. Диаметры обмоточных проводов можно определить по формуле: Здесь I1 является током первичной обмотки, определяемый по собственной формуле: Трансформаторы, изготовленные по расчетам с помощью таблицы, прошли успешные испытания при постоянной максимальной нагрузке, воздействующей на протяжении нескольких часов. Таким образом, расчет тороидального трансформатора позволяет получить точные результаты, подтвержденные на практике. С помощью этой методики можно определить необходимые параметры для любого устройства. | ||||
КПД | 0,76-0,88 | 0,88-0,92 | 0,92-0,95 | 0,95-0,96 |
3. Фактическое сечение стали магнитопровода в месте расположения катушки трансформатора;
4. Расчётное сечение стали магнитопровода в месте расположения катушки трансформатора;
5. Фактическая площадь сечения окна сердечника;
6. Величина номинального тока первичной обмотки;
Табл.№2.
Величина Суммарная мощность вторичных обмоток Рвых, [Вт]2-15 15-50 50-150 150-300 300-1000
COS Φ | 0,85-0,90 | 0,90-0,93 | 0,93-0,95 | 0,95-0,93 | 0,93-0,94 |
7. Расчёт сечения провода для каждой из обмоток (для I1 и I2);
Табл.№3.
Конструкция магнитопровода Плотность тока J, [а/мм кв.] при Рвых, [Вт]2-15 15-50 50-150 150-300 300-1000
Кольцевая | 5-4,5 | 4,5-3,5 | 3,5 | 3,0 |
8. Расчет диаметра проводов в каждой обмотке без учета толщины изоляции;
9. Расчет числа витков в обмотках трансформатора;
n — номер обмотки, U’ — падение напряжения в обмотках, выраженное в процентах от номинального значения, см. таблицу.
В тороидальных трансформаторах относительная величина полного падения напряжения в обмотках значительно меньше по сравнению с броневыми трансформаторами.
Табл.№4.
Тор, величина U’ Суммарная мощность вторичных обмоток Рвых, [Вт]8-25 25-60 60-125 125-250 250-600
U’1 | 7 | 6 | 5 | 3.5 | 2.5 |
U’2 | 7 | 6 | 5 | 3.5 | 2.5 |
Табл.№5.
Конструкция магнитопровода Магнитная индукция Вмах, [Тл] при Рвых, [Вт]5-15 15-50 50-150 150-300 300-1000
Тор | 1,7 | 1,7 | 1,7 | 1,65 | 1,6 |
10. Расчет числа витков приходящихся на один вольт;
11. Формула для расчёта максимальной мощности которую может отдать магнитопровод;
Sст ф – фактическое сечение стали имеющегося магнитопровода в месте расположения катушки;
Sок ф – фактическая площадь окна в имеющемся магнитопроводе;
Вмах- магнитная индукция, см. табл.№5;
J — плотность тока, см. табл.№3;
Кок — коэффициент заполнения окна, см. табл.№6;
Кст — коэффициент заполнения магнитопровода сталью, см. табл.№7;
Тонкости расчётных манипуляций
Чаще всего первичная обмотка питается от обычной сети переменного напряжения в 220 В. Если мастеру нужно две вторичные обмотки, чтобы каждая выдавала минимум по 12 В, то площадь сечения должна составлять минимум 0,23 кв. мм. Но этих данных мало, чтобы правильно рассчитать тороидальный трансформатор.
Мастеру нужно разделить 220 В на определённую сумму напряжений вторичной цепи. Так можно получить коэффициент 3,9, который будет обозначать, что сечение провода для вторичной обмотки должно быть аналогичным с этим показателем. А вот для того, чтобы определить количество витков, нужно прибегнуть к достаточно простой формуле: напряжение 220 В умножить на коэффициент 40, а полученную цифру следует разделить на площадь поперечного сечения магнитопровода.
Отдельно стоит учесть, что от правильности проведённых расчётов зависит уровень КПД тороидального трансформатора и его эксплуатационный срок. Именно поэтому лучше несколько раз всё перепроверить, дабы не допустить самых распространённых ошибок.
Что нужно знать для сборки сварочного аппарата своими руками
Сделать самостоятельно несложный сварочный аппарат вполне по силам любому, знакомому с правилами электромонтажа. Но прежде чем приступать к делу, необходимо выполнить расчёт всех компонентов устройства. От этого будет зависеть эффективность устройства при работе от обычной бытовой однофазной сети.
Конструкция и принцип работы простейших сварочных аппаратов
Для получения устойчивой сварочной дуги, которая позволит сваривать металл разной толщины, требуются токи в пределах 70 – 150 А.
Если использовать устройства, рассчитанные на напряжение 220 В, то они должны потреблять высокую мощность, в пределах 15 – 30 кВт. Поэтому такие установки будут громоздкими, да и работать с ними нормально не выйдет.
А в домашних условиях их просто будет невозможно подключить, стандартные сети не рассчитаны на подобную нагрузку.
Поэтому основной задачей при проектировании и сборке сварочных аппаратов становится обеспечение необходимой силы тока при снижении потребляемой мощности. Это возможно только при выполнении сварочных работ с пониженным напряжением на электродах.
Простейший сварочный аппарат представляет собой следующую конструкцию:
- Понижающий трансформатор, обеспечивающий снижение напряжения до пределов 55 – 70 В и повышающий при этом силу тока до требуемых параметров. Благодаря этому и удаётся снизить энергопотребление до разумных пределов.
- От трансформатора к электроду и обрабатываемой детали ток подаётся при помощи специальных сварочных кабелей. Они отличаются увеличенным сечением и усиленной изоляцией, позволяющей работать с большими токами.
- Для сварки потребуются электроды, устанавливаемые в держатель. Благодаря применяемой обмазке они упрощают зажигание и поддерживание электрической дуги, которая и становится источником тепловой энергии, необходимой для плавления металла.
Сварочный трансформатор
Сложных устройств в конструкции таких сварочных аппаратов нет. Но при проектировании необходимо выполнить расчёт основных параметров, иначе подключение несоответствующего оборудования к сети приведёт к выходу его из строя, к коротким замыканиям на линии или им просто будет невозможно варить.
Виды сварочных аппаратов
Существует несколько основных видов:
Сварочный трансформатор. Для преобразователя применяется понижающий трансформатор.
Сварочный трансформатор
Сварочный инвертор. В качестве преобразователя здесь служит инверторный болк питания с ШИМ.
Сварочный выпрямитель. Это тоже самое что и сварочный трансформатор, только он имеет диодный или тиристорный выпрямитель во вторичной цепи.
Сварочный выпрямитель
Полуавтомат. Сварка производится в инертной среде, для этого используется газовый баллон.
Также читайте: Как сделать фазоуказатель своими руками
Упрощённая схема расчётов сварочника
На практике расчёты ведут, основываясь на типе и диаметре используемых электродов. Да, существуют более сложные и точные расчётные формулы, но любителями они применяются редко. Для получения устойчивой и производительной дуги необходимо получить ток со следующими показателями:
- Для электродов диаметром 2 мм достаточно 30 – 80 А.
- При увеличении диаметра до 3 мм сила тока должна возрасти до 70 – 130 А.
- Для электродов 4 мм устанавливают показатель 110 – 170 А.
- 5-мм электродами варят при силе тока 150 – 200 А.
Разница значений силы тока обусловлена работой с металлами различной толщины, физическими свойствами.
При самостоятельном изготовлении сварочного аппарата чаще всего приходится довольствоваться магнитопроводом от других устройств, который имеется в наличии. Поэтому простейший расчёт и будет выполняться исходя из этих двух известных характеристик — сечение магнитопровода и требуемая сила тока на вторичной обмотке.
Обратите внимание — для сборки трансформатора предпочтительно применять сердечники стержневого типа. По сравнению с броневыми они обеспечивают большую плотность тока в обмотках, обладают повышенным КПД.
Виды магнитопроводов
Кроме того, имеет значение и расположение обмоток на плечах сердечника. Если разнести первичную и вторичные обмотки по разным стержням, это приведёт к увеличению магнитного рассеивания из-за возросшего воздушного зазора. Поэтому предпочтительной считается схема размещения части обеих обмоток и на одном, и на другом стержне.
В этом случае для определения необходимого количества витков первичной обмотки применяют следующую формулу:
N1 = 7440 × U1/(Sиз × I2)
где
N1 — расчётное количество витков;
U1 — напряжение сети (200-240В);
Sиз — сечение имеющегося магнитопровода;
I2 — необходимый сварочный ток.
Обратите внимание, что для устройств с разнесёнными обмотками применяют другую формулу:
N1 = 4960 × U1/(Sиз × I2)
Если предстоит выполнять работы в условиях нестабильного напряжения в сети, есть смысл рассчитать количество витков для основных значений — 180, 190, 200, 220 и 240 В. При намотке провода просто делают отводы на этих значениях, что позволит подобрать стабильный режим работы трансформатора в любых условиях.
Необходимое количество витков вторичной обмотки рассчитывают по следующей упрощённой формуле:
N2 = 0,95 × N1 × U2/U1
где
N1 — расчётное количество витков;
U1 — напряжение сети (200-240В);
U2 — требуемое напряжение холостого хода на вторичной обмотке (50 – 70 В).
Также читайте: Как сделать фазоуказатель своими руками
Для первичной обмотки выбирают медный изолированный провод сечением в пределах 5 – 7 кв. мм, его хватит для работы с бытовой однофазной электросетью. При выборе обращают внимание на жаропрочные показатели изоляции, она должна выдерживать значительный нагрев, которого избежать не выйдет.
Вторичную обмотку мотают более толстым проводом, что связано со значительной силой тока, который будет протекать по ней. Оптимальным вариантом станет медная шина сечением не менее 30 кв. мм.
Сварочный трансформатор — простейших тип оборудования
Для выполнения большинства сварочных работ в домашних условиях хватит понижающего сварочного трансформатора без дополнительных схем или устройств. Последовательность сборки такого агрегата следующая:
- Делят общее количество витков каждой обмотки на две равные половины, чтобы разместить их на обоих стержнях сердечника.
- Если собираете сердечник из отдельных пластин, потребуется их фиксация стяжками или в простейшей обойме. Изолировать пластины друг от друга не следует.
- Для катушек делают каркас из толстого электротехнического картона. Внутренний размер должен соответствовать сечению сердечника и должен позволять смещать катушку вверх или вниз.
- Обмотки наматывают, укладывая витки вплотную друг к другу. При необходимости делают несколько рядов из уложенного провода.
- Если первичная обмотка рассчитана с отводами, то на необходимом количестве витков делают петлю и выводят её, не разрезая.
- На нижнюю часть сердечника надевают первичную обмотку, вторичная крепится сверху.
- Чтобы менять силу тока для сваривания металлов или при работе с деталями, отличающимися по толщине, предусматривают обустройство простейшего регулятора. Он будет перемещать катушки со вторичной обмоткой вверх-вниз.
- Принцип действия такого регулятора основан на изменении воздушного зазора между обмотками. В результате меняются параметры магнитного поля, что и приводит к увеличению или уменьшению силы тока во вторичной обмотке.
- Регулятор представляет собой винт с резьбой, при закручивании которого и происходит подъём катушек. Для этого эти элементы соединяют между собой.
Практически во всех случаях самодельные сварочные аппаратуры делают без корпуса. Это делают с целью предотвращения перегрева катушек, который может стать причиной выхода устройства из строя.
Если сделать схему с принудительным охлаждением при помощи вентилятора, то сварочный трансформатор можно установить и в корпус.
Для его изготовления выбирают устойчивые к температуре пожаробезопасные материалы, например, текстолит толщиной 1,5 – 2 см.
На поверхность корпуса выводят шпильки для подключения сварочных кабелей и сетевого провода. Возможность подключения к отводам первичной обмотки обеспечивают обустройством отдельных контактов или установкой мощного пакетного переключателя на требуемое число положений.
Также читайте: Как сделать фазоуказатель своими руками
Сварочный выпрямитель — особенности работы и сборки
Для выполнения отдельных видов сварочных работ, например, с нержавейкой, применение переменного тока, выдаваемого трансформатором, не применяется. Для работы с такими металлами необходима подача постоянного напряжения. Кроме того, резка постоянным током уменьшает расход электродов, а при сварке предотвращается разбрызгивание металла.
Для выполнения работ в таких условиях применяют сварочные выпрямители, которые позволяют варить током прямой и обратной полярности. Если есть опыт по монтажу электронных схем, то такое устройство также можно собрать самостоятельно.
Основой сварочного выпрямителя станет тот же понижающий трансформатор. Отличие заключается в наличии выпрямляющей электронной схемы. При желании можно переделать уже описанный сварочный трансформатор или собрать универсальное устройство, которое позволит варить и переменным, и постоянным током.
https://www.youtube.com/watch?v=hi6X6T8iVrs
Простейшая схема электронной части сварочного выпрямителя выглядит так:
Принципиальная схема сварочного выпрямителя
При сборке таких устройств следует учитывать такие особенности конструкции:
- Основная часть устройства — выпрямительный мост из силовых мощных диодов. Они подключаются согласно схеме с обязательным учётом полярности.
- Сглаживание пульсации тока выполняется за счёт фильтра, выполненного на конденсаторе и дроссельной катушке. Обращаем внимание — компоненты должны иметь 2,5 – 3 запас по допустимому напряжению.
- При работе с высокими токами происходит нагревание элементов. Чувствительны к перегреву полупроводниковые диоды. Поэтому их устанавливают на радиаторы, которые позволят увеличить интенсивность отвода тепла.
- При заключении аппарата в корпус становится обязательным применение вентилятора, позволяющего повысить эффективность охлаждения.
Обращаем внимание на соединение отдельных элементов схемы. Учитывая то, что они будут испытывать воздействие большой силы тока, необходимо обеспечить надёжность контакта. Если этого не сделать, то на этих участках будут греться и отгорать провода. Предпочтителен вариант с креплением при помощи площадок с болтом и гайкой.
Дроссель в подобных конструкциях выполняют в виде отдельной выносной катушки индуктивности, которая подключается по мере необходимости. Отметим, что установка выпрямителя не препятствует изменению силы сварочного тока при помощи регулятора положения катушек вторичной обмотки.
Как видите, сложностей в самостоятельной сборке сварочного аппарата нет. Но заниматься такими устройствами стоит только в том случае, если есть опыт в конструировании простых аппаратов, работающих с меньшими токами. В противном случае доверьте сборку специалисту или купите заводской сварочный аппарат.
Сварочный аппарат из микроволновки:
Пример сборки на переменном токе
Нажмите на первую фотографию и смотрите последовательность сборки: