Электромагнитные волны: что это, влияние и сферы применения


Радиоволны

Некоторые виды излучения человек может встретить повсеместно. Ярким примером являются радиоволны. Они представляют собой колебания электромагнитной природы, которые способны распределяться в пространстве со скоростью света. Такие волны несут в себе энергию от генераторов.

Источники радиоволн можно разделить на две группы.

  1. Природные, к ним относятся молнии и астрономические единицы.
  2. Искусственные, то есть созданные человеком. Они включают в себя излучатели с переменным током. Это могут быть приборы радиосвязи, вещания, компьютеры и системы навигации.

Кожа человека способна осаждать на своей поверхности этот вид волн, поэтому есть ряд негативных последствий их воздействия на человека. Радиоволновое излучение способно замедлить деятельность мозговых структур, а также вызвать мутации на генном уровне.

Для лиц, у которых установлен кардиостимулятор, такое воздействие смертельно опасно. У этих приборов имеется четкий максимально допустимый уровень излучения, подъем выше него вносит дисбаланс в работу системы стимулятора и ведет к его поломке.

Основные источники электромагнитного излучения

  • Линии электропередач. На расстоянии 10 метров они создают угрозу для здоровья человека, поэтому их размещают на большой высоте либо закапывают глубоко в землю.
  • Электротранспорт. Сюда входят электрокары, электрички, метро, трамваи и троллейбусы, а также лифты. Самым вредным воздействием обладает метро. Лучше передвигаться пешком или на собственном транспорте.
  • Спутниковая система. К счастью, сильное излучение, сталкиваясь с поверхностью Земли, рассеивается, и до людей долетает только малая часть опасности.
  • Функциональные передатчики: радары и локаторы. Они излучают электромагнитное поле на расстоянии 1 км, поэтому все аэропорты и метеорологические станции размещаются как можно дальше от городов.

Излучение от бытовых электроприборов

Широко распространенными источниками электромагнитного излучения являются бытовые приборы, которые находятся у нас дома.

  • Мобильные телефоны. Излучение от наших смартфонов не превышает установленные нормы, но когда мы звоним кому-то, после набора номера идет соединение базовой станции с телефоном. В этот момент сильно превышается норма, так что подносите телефон к уху не сразу, а через несколько секунд после набора номера.
  • Компьютер. Излучение также не превышает норму, но при длительной работе СанПин рекомендует каждый час делать перерыв на 5-15 минут.
  • Микроволновая печь. Корпус микроволновки создает защиту от излучений, но не на 100%. Находиться рядом с микроволновкой – опасно: излучение проникает под кожу человека на 2 см, запуская патологические процессы. Во время работы СВЧ-печи соблюдайте расстояние в 1-1,5 метра от нее.
  • Телевизор. Современные плазменные телевизоры не представляют большой опасности, а вот старых с кинескопами стоит опасаться и держаться на расстоянии минимум 1,5 м.
  • Фен. Когда фен работает, он создает электромагнитное поле огромной силы. В это время мы сушим голову достаточно долго и держим фен близко к голове. Чтобы снизить опасность, пользуйтесь феном максимум 1 раз в неделю. Суша волосы вечером, вы можете вызвать бессонницу.
  • Электробритва. Вместо нее приобретите обычный станок, а если привыкли – электробритву на аккумуляторе. Это в значительной мере снизит электромагнитную нагрузку на организм.
  • Зарядные устройства создают поле во все стороны на расстоянии 1 м. Во время зарядки вашего гаджета не находитесь близко к нему, а после зарядки отсоедините устройство из розетки, чтобы излучения не было.
  • Электропроводка и розетки. Кабеля, отходящие от электрощитов, представляют особую опасность. Расстояние от кабеля до спального места должно быть минимум 5 метров.
  • Энергосберегающие лампы также излучают электромагнитные волны. Это касается люминесцентных и светодиодных ламп. Установите галогеновую лампу или лампу накаливания: они ничего не излучают и не представляют опасности.

Излучение инфракрасного спектра

Все виды излучения тем или иным образом связаны между собой. Некоторые из них видны человеческому глазу. Инфракрасное излучение примыкает к той части спектра, которую глаз человека может уловить. Оно не только освещает поверхность, но и способно ее нагревать.

Основным естественным источником ИК-лучей является солнце. Человеком созданы искусственные излучатели, посредство которых достигается необходимый тепловой эффект.

Теперь нужно разобраться, насколько полезным или вредным является такой вид излучения для человека. Практически все длинноволновое излучение инфракрасного спектра поглощается верхними слоями кожи, поэтому не только безопасно, но и способно повысить иммунитет и усилить восстановительные процессы в тканях.

Что касается коротких волн, то они могут уходить глубоко в ткани и вызывать перегрев органов. Так называемый тепловой удар является следствием воздействия коротких инфракрасных волн. Симптомы этой патологии известны почти всем:

  • появление кружения в голове;
  • чувство тошноты;
  • возрастание пульса;
  • нарушения зрения, характеризующиеся потемнением в глазах.

Как же уберечь себя от опасного влияния? Нужно соблюдать технику безопасности, пользуясь теплозащитной одеждой и экранами. Применение коротковолновых обогревателей должно быть четко дозировано, нагревательный элемент должен быть прикрыт теплоизолирующим материалом, при помощи которого достигается излучение мягких длинных волн.

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда — Солнце. Температура на поверхности Солнца около 6000 К, поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

Рентгеновское излучение

Если задуматься, все виды излучения способны проникать в ткани. Но именно рентгеновское излучение дало возможность использовать это свойство на практике в медицине.

Если сравнить лучи рентгеновского происхождения с лучами света, то первые имеют очень большую длину, что позволяет им проникать даже через непрозрачные материалы. Такие лучи не способны отражаться и преломляться. Данный вид спектра имеет мягкую и жесткую составляющую. Мягкая состоит из длинных волн, способных полностью поглощаться тканями человека. Таким образом, постоянное воздействие длинных волн приводит к повреждению клеток и мутации ДНК.

В настоящее время созданы приборы, позволяющие не только делать фиксированный снимок, например, конечности, но и наблюдать за происходящими с ней изменениями «онлайн». Эти устройства помогаю врачу выполнить оперативное вмешательство на костях под контролем зрения, не производя широких травматичных разрезов. При помощи таких приборов можно исследовать биомеханику суставов.

Что касается негативного воздействия рентгеновских лучей, то длительный контакт с ними может привести к развитию лучевой болезни, которая проявляется рядом признаков:

  • нарушения неврологического характера;
  • дерматиты;
  • снижение иммунитета;
  • угнетение нормального кроветворения;
  • развитие онкологической патологии;
  • бесплодие.

Чтобы защитить себя от страшных последствий, при контакте с этим видом излучения нужно использовать экранирующие щиты и накладки из материалов, не пропускающих лучи.

Применение

Солнечное излучение используют для того, чтобы добыть использовать солнечную энергию. Солнечные батареи (рисунок 3) позволяют аккумулировать солнечную энергию, преобразовывать ее для дальнейшего использования человеком.

Крылья самолетов, поверхности воздушных метеозондов красят серебристой краской (рисунок 4). Так используют способность тел по-разному поглощать энергию. Делают это для того, чтобы уменьшить нагрев.

Излучение применяют для сушки и нагрева материалов, в приборах ночного видения, в медицине. Далее во время обучения вы более подробно рассмотрите природу этого явления.

Оптическое излучение

Данный вид лучей люди привыкли называть попросту – свет. Этот вид излучения способен поглощаться объектом воздействия, частично проходя через него и частично отражаясь. Такие свойства широко применяются в науке и технике, особенно при изготовлении оптических приборов.

Все источники оптического излучения делятся на несколько групп.

  1. Тепловые, имеющие сплошной спектр. Тепло в них выделяется за счет тока или процесса горения. Это могут быть электрические и галогенные лампы накаливания, а также пиротехнические изделия и электродосветные приборы.
  2. Люминесцентные, содержащие газы, возбуждаемые потоками фотонов. Такими источниками являются энергосберегающие приборы и катодолюминесцентные устройства. Что касается радио- и хемилюминесцентных источников, то в них потоки возбуждаются за счет продуктов радиоактивного распада и химических реакций соответственно.
  3. Плазменные, чьи характеристики зависят от температуры и давления плазмы, образующейся в них. Это могут быть газоразрядные, ртутные трубчатые и ксеноновые лампы. Не исключением являются и спектральные источники, а также приборы импульсного характера.

Оптическое излучение на организм человека действует в комплексе с ультрафиолетовым, что провоцирует выработку меланина в коже. Таким образом, положительный эффект длится до тех пор, пока не будет достигнуто пороговое значение воздействия, за пределами которого находится риск ожогов и кожной онкопатологии.

Защита от электромагнитных излучений

  • Если вы проводите много времени за компьютером, запомните одно правило: расстояние между лицом и монитором должно быть около метра.
  • Уровень электромагнитного излучения бытовой техники, которую вы покупаете, не должен доходить до о. Обратитесь к продавцу-консультанту. Он поможет выбрать наиболее безопасную технику.
  • Ваша кровать не должна находиться рядом с местом, где проложена электропроводка. Расположите спальное место в противоположном конце комнаты.
  • Установите защитный экран на компьютер. Он выполнен в виде мелкой металлической сетки и действует по принципу Фарадея: вбирает в себя все излучение, защищая пользователя.
  • Сократите пребывание в электрифицированном общественном транспорте. Отдавайте предпочтение пешей ходьбе, велосипеду.

Ультрафиолетовое излучение

Самым известным и широко применяемым излучением, воздействие которого можно встретить повсеместно, является ультрафиолетовое излучение. Данное излучение имеет два спектра, один из которых доходит до земли и участвует во всех процессах на земле. Второй задерживается слоем озона и не проходит через него. Слой озона обезвреживает этот спектр, тем самым выполняя защитную роль. Разрушение озонового слоя опасно проникновением вредных лучей на поверхность земли.

Естественный источник этого вида излучения – Солнце. Искусственных источников придумано огромное количество:

  • Эритемные лампы, активизирующие выработку витамина Д в слоях кожи и помогающие лечению рахита.
  • Солярии, не только позволяющие позагорать, но и имеющие лечебный эффект для людей с патологиями, вызванными недостатком солнечного света.
  • Лазерные излучатели, используемые в биотехнологиях, медицине и электронике.

Что касается воздействия на организм человека, то оно двоякое. С одной стороны, недостаток ультрафиолета может вызвать различные болезни. Дозированная нагрузка таким излучением помогает иммунитету, работе мышц и легких, а также предотвращает гипоксию.

Все виды влияний делятся на четыре группы:

  • способность убивать бактерий;
  • снятие воспаления;
  • восстановление поврежденных тканей;
  • уменьшение боли.

Виды излучений и их применения

Виды излучений и их применение!

Давыдовой Ольги

11 «А»

Виды излучений

В настоящее время мы знаем 6 видов излучения — гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение, инфракрасное излучение и радиоволны

Радиоволны.

Радиоволны были открыты ещё в 19 веке, их наблюдал Герц в своих экспериментах, первые испытания прошли уже в 20 веке в Ленинграде.

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/с). Свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток, или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии.

Свойства радиоволн.

Свойства радиоволн позволяют им свободно проходить сквозь воздух или вакуум. Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. На этом свойстве основано применение электромагнитных волн в радиолокации.

Главное свойство радиоволн заключаются в том, что они способны переносить через пространство энергию, излучаемую генератором электромагнитных колебаний. Колебания же возникают при изменении электрического поля.

Применение радиоволн.

Радиоволны, как средство для беспроводной передачи звуковой, видео и иной информации на достаточно значительные расстояния, приобрело популярность и широкую сферу использования. Именно радиоволны лежат в основе организации многих современных процессов, среди которых: радиовещание, телевидение, радиотелефонная связь, радиометеорология, радиолокация.

Инфракрасное излучение.

Инфракрасное излучение — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50% излучения Солнца.

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Свойства инфракрасного излучения.

Оптические свойства веществ (прозрачность, коэффициент отражения, преломления) в инфракрасной области спектра, как правило, значительно отличаются от тех же свойств в привычной для нас видимой области.

У большинства металлов отражательная способность для инфракрасного излучения значительно больше, чем для видимого света, и возрастает с увеличением длины волны.

Материалы, прозрачные для ИК-лучей и обладающие высокой способностью к их отражению, используются при создании ИК-приборов

Применение ИК-излучения

Инфракрасное излучение применяют в: медицине; дистанционном управлении; при покраске (для сушки лакокрасочных поверхностей); для стерилизации пищевых продуктов; как антикоррозийное средство (с целью предотвращения коррозии поверхностей, покрываемых лаком); проверка денежных знаков на подлинность; для обогрева помещения.

Рентгеновское излучение

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ — не видимое глазом электромагнитное излучение с длиной волн 10−7—10−12 м. Открыто в 1895 г. нем. физиком В. К. Рентгеном (1845—1923). Испускается при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчатый спектр). Источниками являются: некоторые радиоактивные изотопы, рентгеновская трубка, ускорители и накопители электронов (синхротронное излучение).

Свойства рентгеновского излучения.

Основные свойства рентгеновского излучения: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность, у некоторых веществ вызывает флюоресценцию.

Применение рентгеновского излучения.

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (рентгенография и рентгеноскопия).

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.

При помощи рентгеновских лучей может быть определён химический состав вещества.

В аэропортах активно применяются рентгено-телевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа.

Оптическое излучение

Оптическое излучение – это свет в широком смысле слова, электромагнитные волны, длины которых заключены в диапазоне с условными границами от 1 нм до 1 мм. Помимо воспринимаемого человеческим глазом видимого излучения, к этому виду излучений относятся инфракрасное излучение и ультрафиолетовое излучение. Параллельный термину «О. и.» термин «свет» исторически имеет менее определенные спектральные границы — часто им обозначают не все оптические излучения, а лишь его видимый поддиапазон. Для оптических методов исследования характерно формирование направленных потоков излучения с помощью оптических систем, включающих линзы, зеркала, призмы оптические, дифракционные решётки и т.д.

Свойства оптического излучения

Волновые свойства оптического излучения обусловливают явления дифракции света, интерференции света, поляризации света и др. В то же время ряд оптических явлений невозможно понять, не привлекая представления об оптическом излучении как о потоке быстрых частиц — фотонов. Эта двойственность природы. Оптическое излучение сближает его с иными объектами микромира и находит общее объяснение в квантовой механике. Скорость распространения оптического излучения в вакууме (скорость света) — около 3·108 м/с. В любой другой среде скорость оптического излучения меньше. Значение преломления показателя среды, определяемое отношением этих скоростей (в вакууме и среде), в общем случае неодинаково для разных длин волн оптического излучения, что приводит к дисперсии оптического излучения.

Применение: В сельскохозяйственном производстве инфракрасное излучение используют в основном для обогрева молодняка животных и птицы, сушки и дезинсекции сельскохозяйственных продуктов (зерна, фруктов и т. д.), пастеризации молока, сушки лакокрасочных и пропиточных покрытий

Ультрафиолетовое излучение.

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9·1014 — 3·1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Свойства ультрафиолетового излучения

Высокая химическая активность, невидимое, большая проникающая способность, убивает микроорганизмы, в небольших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздействие: изменения в развитии клеток и обмене веществ, действие на глаза.

Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения.

Длина волны от 10 – 400 нм. Частота волн от 800*1012 — 3000*1013 Гц.

Применение ультрафиолетового излучения.

Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт крайне мало видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения.

Обеззараживание ультрафиолетовым (УФ) излучением. Стерилизация воздуха и твёрдых поверхностей. Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением. Химический анализ, УФ-спектрометрия. УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение. Ловля насекомых. В медицине (обеззараживание помещения).

Гамма-излучение.

Гамма-излучение (гамма-лучи) — вид электромагнитного излучения с чрезвычайно малой длиной волны < 5·10−3 нм и, вследствие этого слабо выраженными волновыми свойствами. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Свойства гамма-излучения.

Гамма-лучи, в отличие от α-лучей и β-лучей, не отклоняются электрическими и магнитными полями, характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

фотоэффект — энергия гамма-кванта поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом, который становится ионизированным;

эффект образования пар — гамма-квант в поле ядра превращается в электрон и позитрон;

ядерный фотоэффект — при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра.

Применение гамма-излучения.

Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.

Консервирование пищевых продуктов.

Стерилизация медицинских материалов и оборудования.

Лучевая терапия.

Гамма-высотомер, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.

Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

Воздействие электромагнитных излучений на человека

Воздействие электромагнитных полей (ЭМП) на человека зависит от интенсивности поля, длины волны, времени воздействия и функционального состояния организма. От длины волны зависит глубина проникновения поля в живой организм. Длинноволновые ЭМП проникают глубоко в организм, подвергая воздействию спинной и головной мозг. ЭМП СВЧ диапазона свою энергию расходуют, в основном, в поверхностном слое кожи, приводя к тепловому воздействию. От этого больше всего страдают органы, не защищённые жировым слоем, бедные кровеносными сосудами (глаза, мозг, почки, желчный и мочевой пузырь, семенники). Избыточная теплота отводится из организма благодаря терморегуляции. Однако, начиная с определённой величины, называемой тепловым порогом, организм не справляется с отводом образующейся теплоты и температура тела повышается. При этом значение теплового порога тем ниже, чем выше частота ЭМП. Например, для волн дециметрового диапазона тепловой порог 40 мВт/см2, а для миллиметровых волн — 7 мВт/см2. Постоянное воздействие ЭМП ведет к функциональным расстройствам нервной, эндокринной и сердечно-сосудистой систем, у человека понижается кровяное давление, замедляется пульс, тормозятся рефлексы, изменяется состав крови. Тепловое воздействие может привести к перегреву тела и отдельных органов, нарушению их функциональной деятельности. ЭМП СВЧ диапазона приводят к тепловой катаракте (помутнение хрусталика глаза). Субъективно проявление воздействия ЭМП выражается в повышенной утомляемости, головной боли, раздражительности, одышке, сонливости, ухудшении зрения, повышении температуры тела. Допустимые уровни воздействия ЭМП приведены в ГОСТ12.1.006-84 «Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля». ГОСТ12.1.006-84 устанавливает предельно допустимые значения плотности потока энергии электромагнитного поля. Предельно допустимые значения плотности потока энергии электромагнитного поля составляют – 25мкВт/см2 в течение 8 часов, 100мкВт/см2 в течение 2 часов, при этом максимальное значение не должно превышать 1000мкВт/см2. ЭМП с частотой от 60 кГц до 300 МГц нормируются отдельно по электрической и по магнитной составляющей, так как на этих частотах на человека действуют независимо друг от друга электрическое и магнитное поле. Для полей СВЧ диапазона (300 МГц — 300 ГГц) нормируют предельно-допустимую плотность потока энергии, которая не должна превышать 10 Вт/м2. Если значения ЭМП на рабочих местах превышают допустимые, то необходимо предусмотреть соответствующие способы защиты человека. Во времена СССР на военных заводах, в НИИ, КБ, люди связанные с высокочастотным излучением получали: 15% надбавку за вредность, сокращенный рабочий день, сокращение возраста выхода на пенсию. Чувствительность организма к высокочастотному излучению начинается при уровнях много меньше теплового воздействия. Начиная порядка долей микроватт на сантиметр квадратный; до единиц милливатт продолжается фаза угнетения организма, далее наступает фаза стимуляции — улучшение под влиянием высокочастотного излучения общего состояния организма или чувствительности его отдельных органов, а на плотности более 10 мВт/см2 снова наступает фаза угнетения организма». Сотовый телефон является источником неионизирующего излучения в диапазонах 900 и 1800 МГц. По воздействию на организм человека высокочастотное излучение условно делится на два вида:

Гамма-излучение

Это так называемые космические лучи, несущие в себе ядра атомов радиоактивных веществ и элементов. Поток гамма-излучения имеет очень большую энергию и способен быстро проникать в клетки организма, ионизируя их содержимое. Разрушенные клеточные элементы действуют как яды, разлагаясь и отравляя весь организм. В процесс обязательно вовлекается ядро клеток, что ведет к мутациям в геноме. Здоровые клетки разрушаются, а на их месте образуются мутантные, не способные в полной мере обеспечить организм всем необходимым.

Данное излучение опасно тем, что человек его никак не ощущает. Последствия воздействия проявляются не сразу, а имеют отдаленное действие. В первую очередь страдают клетки кроветворной системы, волос, половых органов и лимфоидной системы.

Радиация очень опасна развитием лучевой болезни, но даже такому спектру нашли полезное применение:

  • с его помощью стерилизуют продукты, оборудование и инструменты медицинского предназначения;
  • измерение глубины подземных скважин;
  • измерение длины пути космических аппаратов;
  • воздействие на растения с целью выявления продуктивных сортов;
  • в медицине такое излучение применяется для проведения лучевой терапии в лечении онкологии.

В заключение нужно сказать, что все виды лучей с успехом применяются человеком и являются необходимыми. Благодаря им существуют растения, животные и люди. Защита от чрезмерного воздействия должна быть приоритетным правилом при работе.

От рентгена к гамма

Граница, на которой рентгеновский диапазон сменяется гамма-излучением, также условна. Обычно ее связывают с энергией квантов, которые испускаются при ядерных реакциях (или наоборот, могут их вызывать). Другой подход связан с тем, что тепловое излучение не принято относить к гамма-диапазону, как бы ни была высока его энергия. Во Вселенной наблюдаются относительно стабильные макроскопические объекты, разогретые до десятков миллионов градусов — это центральные участки аккреционных дисков вокруг нейтронных звезд и черных дыр. А вот объекты с температурой в миллиарды градусов — например, ядра массивных красных гигантов — практически всегда укрыты непрозрачной оболочкой. Впрочем, нередко даже излучение в их недрах называют не мягким гамма-излучением, а сверхжестким рентгеном. Устойчивых образований с температурой выше десятков миллиардов градусов в современной Вселенной неизвестно. Это дает основание считать, что гамма-излучение всегда генерируется нетепловым путем. Основным механизмом является излучение при столкновении заряженных частиц, разогнанных до околосветовых скоростей мощными электромагнитными полями, например, у нейтронных звезд.

Световой диапазон

  • Частота: $10^{11} – 10^{18}$ Гц.
  • Длина волны: $3\times10^{-10} – 3\times10^{-3}$м.

Электромагнитное излучение в данном диапазоне распространяется подобно видимому свету, поэтому диапазон называется световым. Однако видимый свет в нём занимает лишь узкую полосу частот $3.5\times 10^{14}$ Гц – $7.5\times 10^{14}$ Гц. Более низкие частоты занимает инфракрасное излучение, которое генерируют все нагретые тела. Более высокие частоты занимает ультрафиолетовое излучение, генерируемое с помощью специальных УФ-ламп.

Излучение в данном диапазоне хорошо распространяется в атмосфере и при этом отражается от твердых и жидких поверхностей. Это обуславливает развитие зрительного анализатора у большинства живых существ.

Излучение систем заряженных частиц

Про­стей­шая сис­те­ма, ко­то­рая мо­жет из­лу­чать, – ди­поль элек­три­че­ский с пе­ре­мен­ным ди­поль­ным мо­мен­том – сис­те­ма из двух раз­но­имён­но за­ря­жен­ных ко­леб­лю­щих­ся час­тиц. При из­ме­не­нии по­ля ди­по­ля, напр. при ко­ле­ба­ни­ях час­тиц вдоль со­еди­няю­щей их пря­мой (оси ди­по­ля) на­встре­чу друг дру­гу, часть по­ля от­ры­ва­ет­ся и фор­ми­ру­ют­ся элек­тро­маг­нит­ные вол­ны. Та­кое И. не­изо­троп­но, его энер­гия в разл. на­прав­ле­ни­ях не­оди­на­ко­ва: мак­си­маль­на в на­прав­ле­нии, пер­пен­ди­ку­ляр­ном оси ко­ле­ба­ний час­тиц, и от­сут­ст­ву­ет в пер­пен­ди­ку­ляр­ном на­прав­ле­нии, для про­ме­жу­точ­ных на­прав­ле­ний его ин­тен­сив­ность про­пор­цио­наль­на $\text{sin}\:\theta^2$ ($θ$ – угол ме­ж­ду на­прав­ле­ни­ем И. и осью ко­ле­ба­ния час­тиц). Ре­аль­ные из­лу­ча­те­ли, как пра­ви­ло, со­сто­ят из боль­шо­го чис­ла раз­но­имён­но за­ря­жен­ных час­тиц, но час­то учёт их рас­по­ло­же­ния и де­та­ли дви­же­ния вда­ли от сис­те­мы не­су­ще­ст­вен­ны; в этом слу­чае воз­мож­но уп­ро­стить ис­тин­ное рас­пре­де­ле­ние, «стя­нув» од­но­имён­ные за­ря­ды к не­ко­то­рым цен­трам рас­пре­де­ле­ния за­ря­дов. Ес­ли сис­те­ма в це­лом элек­тро­ней­траль­на, то её И. при­бли­жён­но мож­но счи­тать И. элек­трич. ди­по­ля.

Ес­ли ди­поль­ное И. сис­те­мы от­сут­ст­ву­ет, то её мож­но пред­ста­вить как квад­ру­поль или бо­лее слож­ную сис­те­му – муль­ти­поль. При дви­же­нии за­ря­дов в ней воз­ни­ка­ет элек­трич. квад­ру­поль­ное или муль­ти­поль­ное И. Ис­точ­ни­ка­ми И. мо­гут быть так­же сис­те­мы, ко­то­рые пред­став­ля­ют со­бой маг­нит­ные ди­по­ли (напр., кон­тур с то­ком) или маг­нит­ные муль­ти­по­ли. Ин­тен­сив­ность маг­нит­но­го ди­поль­но­го И., как пра­ви­ло, в $(v/c)^2$ раз мень­ше ин­тен­сив­но­сти элек­трич. ди­поль­но­го И. и од­но­го по­ряд­ка с элек­трич. квад­ру­поль­ным из­лу­че­ни­ем.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]