5.7. Активное и внутреннее индуктивное сопротивление проводов

При включении катушки индуктивности в цепь переменного тока, под действием непрерывно изменяющегося напряжения происходят изменения этого тока. В свою очередь, эти изменения вызывают генерацию магнитного поля, которое периодический возрастает или убывает. Под его влиянием в катушке индуцируется встречное напряжение, препятствующее изменениям тока. Таким образом, протекание тока происходит под непрерывным противодействием, получившим название индуктивного сопротивления.

Виды сопротивления и их особенности

Если в цепи постоянное напряжение, то, зная её сопротивление, можно узнать силу тока при помощи закона Ома. Он говорит о том, что сила тока пропорциональна напряжению, которое является его причиной. Коэффициент пропорциональности представляет обычное сопротивление. Его принято называть активным.

Если напряжение является постоянным, то сопротивление будет только активным. Его значение определяет, сколько энергии электрического поля преобразовано в тепло, то есть, безвозвратно утрачено. Поэтому при работе с кабелями СИП-3 1×50, СИП-2 3×70 и другими нужно помнить, что потери энергии из-за активного сопротивления могут быть значительными.

Более распространено использование переменного тока. Он возникает под воздействием напряжения, циклически изменяющегося по синусоидальному закону. Такой ток порождает реактивное сопротивление, которое дополняет действие активного. Существует две разновидности реактивного сопротивления различной природы — на основе индуктивности или емкости. Их отличительной особенностью является то, что они способствуют не трате электроэнергии, а преобразованию её в другую форму.

Нужно учитывать, что применение различных видов кабелей связано не только с наличием активного сопротивления, но и реактивного. Например, кабели СИП-3 1×50, СИП-2 3×70, АС-95 могут использоваться в электросетях и с активным, и индуктивным, и емкостным сопротивлениями.

Чтобы понять, что собой представляет индуктивное сопротивление, можно представить цепь, в которой имеется катушка, подключённая к источнику переменного тока. Как известно, напряжение меняется по синусоидальному закону. При этих изменениях катушка будет создавать магнитное поле, которое будет, в частности, влиять на текущий через него ток. Согласно природе магнитного поля, при уменьшении тока магнитное поле способствует его увеличению, а при усилении наблюдается противоположный эффект. Кроме того, цепь переменного тока с активным сопротивлением тратит энергию на выделение тепла.

На практике речь идёт о действии индуктивного сопротивления, обеспечивающего сдвиг фазы между током и напряжением. Движение зарядов создаёт поле, которое в свою очередь препятствует изменению тока. Такое сопротивление присутствует не только в катушках, но и, например, при использовании кабеля СИП-2 3×70.

Емкостное сопротивление имеет другую природу. Для объяснения следует рассмотреть цепь, состоящую из источника переменного тока и конденсатора. Последний представляет собой деталь, в которой две поверхности параллельны друг другу и не имеют непосредственного электрического контакта.

При использовании постоянного тока на обкладках конденсатора накапливаются заряды: на одной — положительный, а на второй — отрицательный. Электрополе за счет накопленного заряда представляет собой источник, противодействующий току. Поэтому конденсатор в цепи постоянного тока является бесконечно большим сопротивлением. Ток не проходит сквозь диэлектрик, разделяющий обкладки конденсатора.

В цепи переменного тока конденсатор циклически заряжается и разряжается, обеспечивая движение электрозарядов. Данный процесс в цепи переменного тока с активным и реактивным сопротивлением будет происходить с опозданием относительно синусоидального изменения напряжения. Таким образом, конденсатор представляет собой конечное сопротивление, получившее название емкостного.

Разница между емкостным и индуктивным сопротивлением заключается в том, что через индуктивную катушку постоянный ток протекает, а при использовании конденсатора пройти не может. Однако переменный ток в обеих цепях может течь без каких-либо проблем.

Практическое использование

Одним из распространённых применений индуктивного сопротивления катушки является создание фильтров. В сложных системах могут возникать шумы на высоких частотах, которые снижают качество передачи сигнала. Это может быть актуально, например, для акустических систем, зависящих от качества воспроизведения звуковых сигналов. В этом случае выручает то, что индуктивное сопротивление определяется частотой тока.

Электротоки разной частоты, проходящие через катушку, вызывают в ней разное индуктивное сопротивление. Оно тем больше, чем выше частота переменного тока. При нулевой частоте, то есть, установившемся постоянном ток, индуктивное сопротивление также равно нулю.

Сигналы пропускают через фильтр с индуктивным сопротивлением, препятствующим прохождению сигналов нежелательной частоты. Чтобы преградить путь низкочастотным звуковым сигналам, используют катушки со стальными сердечниками, высокочастотным — без сердечников. Такие катушки называются дросселями, соответственно, низкой и высокой частоты.

В рассматриваемой ситуации удобно одновременно использовать еще и ёмкостное сопротивление, зависящее также от частоты тока. Но оно с ее увеличением уменьшается. Таким образом, с помощью фильтров можно избавляться от нежелательных шумовых сигналов.

Ещё одно важное применение рассматриваемого явления — трансформатор. Та самая самоиндукция, которая тормозит прохождение тока, благодаря создаваемому сопротивлению в этом устройстве играет положительную роль.

В трансформаторе используется сердечник и две обмотки. На первичную обмотку поступает переменное напряжение питания, а на вторичной генерируется индукционный ток. Наличие индукционных токов определенной величины необходимо для работы многих электроприборов.

С помощью трансформатора можно, например, преобразовать 220 В сетевого питания в 12 В, которые необходимы для электропитания стереосистемы. Такая подстройка определяется соотношением количества витков на первичной и вторичной обмотках.

Катушка представляет собой источник ЭДС. Эту ее особенность используют в индукционных плитах. Электромагнитные волны, создаваемые катушкой, нагревают кухонную посуду и их содержимое. По такому же принципу работают и печи на сталелитейных заводах.

Зная, что собой представляет такое явление, как индуктивное сопротивление, его можно использовать для расчета параметров различного электротехнического и энергетического оборудования.

Что зовется индуктивным сопротивлением

Когда на катушку подают переменное напряжение, ток, проходящий по ней, меняется согласно поданному напряжению. Это служит причиной изменения магнитного поля, создающего электродвижущую силу, препятствующую происходящему.

В такой цепи имеется зависимость электрических параметров от двух видов: обычного и индуктивного. Они обозначаются, соответственно, как R и XL.

На обычном происходит выделение мощности. Однако на реактивных элементах она является нулевой. Это связано с постоянным изменением направления переменного тока.

В течение одного периода колебаний энергия дважды закачивается в катушку и столько же раз возвращается в источник.

Применениекатушек индуктивности

Катушки индуктивности (совместно с конденсаторами и/илирезисторами ) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепейобратной связи ,колебательных контуров и т. п..

Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.

Две и более индуктивно связанные катушки образуют трансформатор .

Катушка индуктивности, питаемая импульсным током от транзисторного ключа , иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-засамоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.

Катушки используются также в качестве электромагнитов .

Катушки применяются в качестве источника энергии для возбуждения индуктивно-связанной плазмы .

Для радиосвязи — излучение и приём электромагнитных волн (магнитная антенна, кольцевая антенна).

  • Рамочная антенна
  • Индукционная петля

Для разогрева электропроводящих материалов в индукционных печах .

Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах перемещением (вытаскиванием) сердечника.

Катушка индуктивности используется в индукционных датчиках магнитного поля. Индукционные магнитометры были разработаны и широко использовались во временаВторой мировой войны .

Принцип действия индуктивного сопротивления линий

Именно индуктивность признана главной характеристикой для катушек наряду с аналогичным показателем для их обмоток. R реактивного вида, проявляющееся под действием самоиндукционной ЭДС, растет в прямой пропорции с частотой тока.

Реактивная и активная составляющие обуславливают полное сопротивление, которое можно представить в виде суммы квадратов каждого показателя.

Оперативно справиться с поставленной задачей по расчету номинальных показателей помогут специальные таблицы. В них для самых распространенных проводников приведены все главные характеристики. Но на практике часто требуется узнать Х для участка с конкретной протяженностью. В этом случае главным инструментом является уже приводившееся выражение

Удельное сопротивление

Удельное сопротивление (ρ) — это единица, показывающая способность проводника затруднять прохождение электрического тока.

С помощью него можно оценивать параметры электрических проводников из разных материалов. ρ проводника всегда увеличивается при увеличении длины и уменьшении сечения, в интернациональной системе длина проводника равна 1 метру, а сечение -1 мм2.

Похожее: Проблемы с led телевизором: звук есть, изображения нет

От каких факторов зависит сопротивление

Изменение силы тока создает электромагнитное поле переменной интенсивности. Результатом его воздействия на проводник является противодействие происходящему изменению тока.

Это противодействие называется реактивным сопротивлением. Существуют две его разновидности: индуктивная и емкостная. Первая создается при наличии в схеме индуктивного элемента, вторая — конденсатора.

В ситуации, когда в цепи присутствует катушка, ее реакция усиливается по мере увеличения частоты.

В случае, когда ее индуктивность уменьшается, то противодействующая сила также становится меньше. При увеличении она возрастает.

Индуктивное сопротивление существенно связано с тем, какую форму принимает проводник. Оно имеется также и у отдельного провода, лежащего прямо. Однако если рядом будет еще один, то он будет оказывать воздействие дополнительно, что повлияет на рассматриваемую величину.

Рассматриваемую характеристику отдельного провода можно определять в зависимости от его толщины, но оно никак не связано с его сечением.

Емкостное сопротивление

В цепи, содержащей емкость и источник переменного тока происходят изменения заряда. Такой емкостью обладают конденсаторы, обладающие максимальной энергией при полном заряде. Напряжение емкости создает сопротивление, противодействующее течению переменного тока, которое считается реактивным. В результате взаимодействия, конденсатор и источник тока постоянно обмениваются энергией.

В конструкцию конденсатора входят токопроводящие пластины в количестве двух и более штук, разделенных слоями диэлектрика. Такое разделение не позволяет постоянному току проходить через конденсатор. Переменный ток может проходить через емкостное устройство, отклоняясь при этом от своей первоначальной величины.

Изменения переменного тока происходят под влиянием емкостного сопротивления. Чтобы лучше понять схему работы, найдем и рассмотрим принцип действия данного явления. Переменное напряжение, приложенное к конденсатору, изменяется в форме синусоиды. Под его воздействием на обкладках наблюдается всплеск, одновременно здесь накапливаются заряды электроэнергии с противоположными знаками. Их общее количество ограничено емкостью устройства и его габаритами. Чем выше емкость устройства, тем больше времени требуется на зарядку.

В момент изменения полупериода колебания, напряжение на обкладках конденсатора меняет свою полярность на противоположное значение, потенциалы также изменяются, а заряды пластин перезаряжаются. За счет этого удается создать течение первичного тока и находить способ противодействовать его прохождению, при уменьшении величины и сдвиге угла. Зарядка обкладок позволяет току, проходящему через конденсатор, опережать напряжение на 90.

Катушка индуктивности

Он представляет собой изолированный провод, многократно намотанный вокруг сердечника.

Обычно каркас имеет цилиндрическую или тороидальную форму.

Индуктивность рассматривается в качестве основной характеристики катушки. Это качество выражает способность элемента осуществлять преобразование переменного тока в магнитное поле.

Важно! Магнитные свойства существуют даже у одиночного провода, при условии, что изменяется проходящий через него ток. Воздействие поля направлено так, чтобы противодействовать его изменению. Если он будет увеличиться, поле будет его тормозить, а если ослабевать — усиливать.

Определение направления силовых линий подчиняется «правилу большого пальца»: если у сжатой в кулак руки большой палец указывает в направлении изменения силы тока, то сомкнутые пальцы подсказывают направление силовых линий поля.

Таким образом в том случае, если провод многократно намотан на цилиндрическое основание, то силовые линии от разных витков складываются и проходят через ось.

Будет интересно➡ Делаем токопроводящий клей из подручных материалов

Для того, чтобы многократно увеличить индуктивность, в центр цилиндра помещают сердечник из ферромагнитного материала.

Принцип действия

Принцип действия катушки индуктивности заключается в создании и взаимодействии магнитного потока витками обмотки.

Если взять в упрощенном случае единичный виток, то при прохождении через него электрического тока, создается магнитный поток, движущийся вдоль поверхности контура, пропорциональный величине тока и значению индуктивности:

Ф=L·I, где

Ф – магнитный поток;

L – индуктивность;

I – сила тока.

Важно! Катушки в подавляющем большинстве случаев представляют собой многовитковую конструкцию, поэтому образуют сложную поверхность и расчеты параметров производятся в упрощенном виде. Магнитный поток соленоидальной катушки

Образование магнитного потока каждым из витков и взаимодействие его с остальными (магнитная индукция) приводит к возникновению ЭДС самоиндукции, которая заключается в том, что, при изменении величины протекающего тока в катушке, образуется ЭДС и, соответственно, ток, направленный, чтобы противодействовать изменениям.

В случае переменного тока это приводит к тому, что фаза тока отстает от фазы напряжения на 90°. Данное свойство используется в компенсаторах реактивного сопротивления (реакторах), дросселях, линиях задержки.

Важно! Величина ЭДС самоиндукции прямо пропорциональна скорости изменения тока. Это позволяет разрабатывать источники высоковольтного напряжения

Автомобильная катушка зажигания состоит из двух обмоток – низковольтной и высоковольтной. При размыкании питания в низковольтной обмотке в ней формируется импульс ЭДС самоиндукции, который в высоковольтной обмотке достигает десятков тысяч вольт.

Сопротивление катушки индуктивности включает две составляющих:

  • Индуктивное сопротивление;
  • Сопротивление потерь.

Индуктивное сопротивление (реактивное сопротивление, импеданс) зависит от частоты протекающего тока:

XL = 2·π·f·L, где

π – 3.14;

f – частота;

L – индуктивность.

Сопротивление потерь включает в себя:

  • Потери в проводах (активное сопротивление катушки);
  • Потери на вихревые токи;
  • Потери в сердечнике;
  • Потери в диэлектрике.

Важно! Некоторые потери вносит также распределенная емкость, которую снижают путем использования особой конфигурации обмоток, разделения ее на секции. Основную долю потерь вносит активное сопротивление

Основную долю потерь вносит активное сопротивление.

Формулы, зависимости и виды индуктивности

Электрическая индуктивность L – это величина, равная коэффициенту пропорциональности между током I, протекающим в замкнутом контуре, и создаваемым им магнитным потоком, иначе называемым потокосцеплением Y:

Y = LI.

Если к выводам катушки на некоторое время приложить напряжение, то в ней начнёт протекать ток I и формироваться магнитное поле. Чем меньше индуктивность L, тем быстрее протекает данный процесс. В итоге рассматриваемый двухполюсник накопит некоторое количество потенциальной энергии. При отключении питания он будет стремиться её вернуть. В результате на выводах катушки образуется ЭДС самоиндукции E, которая многократно превышает изначально приложенное напряжение. Подобная технология ранее использовалась в магнето систем зажигания ДВС, а сейчас широко встречается в повышающих DC-DC преобразователях.

Формула ЭДС самоиндукции, здесь t – это время, в течение которого ток I уменьшится до нуляПростой DC-DC повышающий преобразователь

Катушка (она же – дроссель) – это радиодеталь с ярко выраженной индуктивностью, ведь именно для этого её и создавали. Однако подобным свойством обладают в принципе все элементы. Например, конденсатор, резистор, кабель, просто кусок провода и даже тело человек также имеют некоторую индуктивность. В расчетах ВЧ схем это обязательно принимается во внимание.

Важно! Проводя измерение индуктивности специализированным прибором, стоит помнить, что нельзя держаться руками за оба его вывода. В противном случае показания могут измениться и будут неверными. Вызвано это включением в измеряемую цепь тела человека с его собственной индуктивностью.

Соотношение между фазами U и I на X L

Так как активное сопротивление катушки по условию равно нулю (чисто индуктивное сопротивление), то все напряжение приложенное генератором к катушке идет на преодоление э. д. с. самоиндукции катушки. Это значит что график напряжения приложенного генератором к катушке равен по амплитуде графику э. д. с. самоиндукции катушки и находится с ним в противофазе.

Напряжение приложенное генератором к чисто индуктивному сопротивлению и ток идущий от генератора по чисто индуктивному сопротивлению сдвинуты по фазе на 90 0 ,т. е. напряжение опережает ток на 90 0.

Реальная катушка кроме индуктивного сопротивления имеет еще и активное сопротивление. Эти сопротивления следует считать соединенными последовательно.

На активном сопротивлении катушки напряжение приложенное генератором и ток идущий от генератора совпадают по фазе.

На чисто индуктивном сопротивлении напряжение приложенное генератором и ток идущий от генератора сдвинуты по фазе на 90 0 . Напряжение опережает ток на 90 0 . Результирующее напряжение приложенное генератором к катушке определяется по правилу параллелограмма.

кликните по картинке чтобы увеличить

Результирующее напряжение приложенное генератором к катушке всегда опережает ток на на угол меньший 90 0 .

Величина угла φ зависит от величин активного и индуктивного сопротивлений катушки.

О результирующем сопротивлении катушки

Результирующее сопротивление катушки нельзя находить суммированием величин её активного и реактивного сопротивлений

.

Результирующее сопротивление катушки Z равно

Катушка индуктивности в цепи переменного тока

Катушка индуктивности в цепи переменного тока ведет себя не так, как резистор. Если резисторы просто противостоят потоку электронов (напряжение на них прямопропорционально току), то катушки индуктивности противостоят изменению проходящего через них тока (напряжение на них прямопропоционально скорости изменения тока). Согласно Закону Ленца, индуцированное напряжение всегда имеет такую полярность, которая пытается сохранить текущее значение силы тока. То есть, если величина тока возрастает, то индуцированное напряжение будет «тормозить» поток электронов; если величина тока уменьшается, то полярность напряжения развернется и будет «помогать» электронному потоку оставаться на прежнем уровне. Такое противостояние изменению величины тока называется реактивным сопротивлением.

Математическая взаимосвязь между напряжением на катушке индуктивности и скоростью изменения тока через нее выглядит следующим образом:

Отношение di/dt представляет собой скорость изменения мгновенного тока (i) с течением времени, и измеряется в амперах в секунду. Индуктивность (L) измеряется в Генри, а мгновенное напряжение (u) – в вольтах. Чтобы показать, что происходит с переменным током, давайте проанализируем простую индуктивную схему:

Простая индуктивная цепь: ток катушки отстает от напряжения на 90 o .

Если мы построим график тока и напряжения для этой простой цепи , то он будет выглядеть примерно так:

Как вы помните, изменение напряжения на катушке индуктивности является реакцией на изменение тока, проходящего через нее. Отсюда можно сделать вывод, что мгновенное напряжение равно нулю всякий раз, когда мгновенное значение тока находится в пике (нулевое изменение, или нулевой наклон синусоидальной волны тока), и мгновенное напряжение равно своему пиковому значению всякий раз, когда мгновенный ток находится в точках максимального изменения (точки самого крутого наклона волны тока, в которых она пересекает нулевую линию). Все это приводит к тому, что волна напряжения на 90 o не совпадает по фазе с волной тока. На графике видно, как волна напряжения дает «фору» волне тока: напряжение «ведет» ток, а ток «запаздывает» за напряжением.

Читать также: Из чего сделать зубило по металлу

Ели мы на этот график нанесем значения мощности нашей схемы, то все станет еще более интересным:

Поскольку мгновенная мощность представляет собой произведение мгновенного напряжения и мгновенного тока (p = iu), она будет равна нулю, если мгновенное напряжение или ток будут равны нулю. Всякий раз, когда мгновенные значения тока и напряжения имеют положительные значения (выше нулевой линии), мощность так же будет положительна. Аналогично примеру с резистивной цепью, мощность примет положительное значение и в том случае, если мгновенный ток и напряжение будут иметь отрицательные значения (ниже нулевой линии). Однако, вследствие того, что волны напряжения и тока не совпадают по фазе на 90 o , бывают случаи, когда ток положителен, а напряжение отрицательно (или наоборот), в результате чего появляются отрицательные значения мгновенной мощности.

Но, что такое отрицательная мощность? Отрицательная мощность означает, что катушка индуктивности отдает энергию обратно в цепь. Положительная же мощность означает, что катушка индуктивности поглощает энергию из цепи. Так как положительные и отрицательные циклы питания равны по величине и продолжительности, в течение полного цикла катушка индуктивности отдает обратно в схему столько же энергии, сколько она потребляет из нее. В практическом смысле это означает, что реактивное сопротивление катушки не рассеивает никакой энергии, чем оно и отличается от сопротивления резистора, рассеивающего энергию в виде тепла. Однако, все вышесказанное справедливо только для идеальных катушек индуктивности, провода которых не имеют никакого сопротивления.

Сопротивление катушки индуктивности, изменяющее силу тока, интерпретируется как сопротивление переменному току в целом, у которого по определению постоянно меняется мгновенная величина и направление. Это сопротивление переменному току похоже на обычное сопротивление, но отличается от него тем, что всегда приводит к фазовому сдвигу между током и напряжением, а так же рассеивает нулевую мощность. Из-за указанных различий, данное сопротивление носит несколько иное название – реактивное сопротивление. Реактивное сопротивление, как и обычное, измеряется в Омах, только обозначается оно символом Х, а не R. Для большей конкретики, реактивное сопротивление катушки индуктивности обычно обозначают заглавной буквой Х с буквой L в качестве индекса: X L .

Поскольку напряжение на катушке индуктивности пропорционально скорости изменения тока, оно будет больше для быстро меняющихся токов, и меньше – для токов с более медленным изменением. Это означает, что реактивное сопротивление любой катушки индуктивности (в Омах) прямопропорционально частоте переменного тока. Точная формула расчета реактивного сопротивления выглядит следующим образом:

Если на катушку индуктивностью 10 мГн воздействовать частотами 60, 120 и 2500 Гц, то ее реактивное сопротивление примет следующие значения:

В уравнении реактивного сопротивления выражение “2πf” имеет важное значение. Оно означает число в радианах в секунду, характеризующее «вращение» переменного тока (один полный цикл переменного тока представляет собой одно полное круговое вращение). Радиан – это единица измерения углов: в одном полном круге есть 2π радиан, точно так же, как в нем есть 360 o . Если генератор переменного тока двухполюсный, то он произведет один полный цикл для каждого полного оборота вала, что будет означать 2π радиан или 360 o . Если постоянную 2π умножить на частоту в герцах (циклах в секунду), то результатом будет число в радианах в секунду, известное как угловая (циклическая) частота переменного тока.

Помимо выражения 2πf, угловая частота переменного тока может обозначаться строчной греческой буквой ω (Омега). В этом случае формула X L = 2πfL может быть написана как X L = ωL.

Необходимо понимать, что угловая частота является выражением того, насколько быстро проходит полный цикл волны, равный 2π радиан. Она необязательно представляет фактическую скорость вала генератора, производящего переменный ток. Если генератор имеет более двух полюсов, его угловая частота будет кратной скорости вращения вала. По этой причине ω иногда выражается в единицах электрических радиан в секунду, чтобы отличить ее от механического движения.

При любом способе выражения угловой частоты очевидно, что она прямопропорциональна реактивному сопротивлению катушки индуктивности. При увеличении частоты переменного тока (или скорости вращения вала генератора), катушка индуктивности будет оказывать большее сопротивление прохождению тока и наоборот. Переменный ток в простой индуктивной цепи равен напряжению (в Вольтах) поделенному на реактивное сопротивление катушки индуктивности (в Омах). Как видите, это аналогично тому что переменный или постоянный ток в простой резистивной цепи равен напряжению (в Вольтах) поделенному на сопротивление (в Омах). В качестве примера давайте рассмотрим следующую схему:

Однако, мы должны иметь в виду, что напряжение и ток имеют разные фазы. Как было сказано ранее, напряжение имеет фазовый сдвиг +90 o по отношению к току (рисунок ниже). Если представить фазовые углы напряжения и тока математически (в виде комплексных чисел), то мы увидим, что сопротивление катушки индуктивности переменному току обладает следующим фазовым углом:

Ток на катушке индуктивности отстает от напряжения на 90 o .

Математически можно сказать, что фазовый угол сопротивления катушки индуктивности переменному току составляет 90 o . Фазовый угол реактивного сопротивления току очень важен при анализе цепей. Особенно эта важность проявляется при анализе сложных цепей переменного тока, где реактивные и простые сопротивления взаимодействуют друг с другом. Он также окажется полезным для представления сопротивления любого компонента электрическому току с точки зрения комплексных чисел (а не скалярных величин сопротивления и реактивного сопротивления).

Расчёт индуктивного сопротивления катушки

Любая индуктивность, в т.ч. катушка, оказывает переменному току некоторое сопротивление. Как его рассчитать, было описано выше. Из формулы XL=2pfL видно, что сопротивление дросселя в первую очередь зависит от частоты протекающего по нему тока и его индуктивности. При этом с обоими параметрами связь прямо пропорциональная.

Полное сопротивление

Частота – это характеристика внешней среды, индуктивность катушки зависит от ряда её геометрических свойств:

L=u0urN2S/l,

где:

  • u0 – магнитная проницаемость вакуума — 4p*10-7 Гн/м;
  • ur – относительная проницаемость сердечника;
  • N – количество витков дросселя;
  • S – его поперечное сечение в м2;
  • l – длина катушки в метрах.

Располагая вышеописанными формулами и информацией о материале и размерах катушки, можно достаточно точно прикинуть её индуктивное сопротивление без каких-либо измерительных приборов.

Дополнительная информация. Некоторые цифровые мультиметры имеют режим замера индуктивности. Подобная функция встречается редко, однако иногда оказывается очень полезной. Поэтому при выборе прибора стоит обратить внимание на то, способен ли он измерять индуктивность.

Расчет параметров катушки

Приходится при расчётах рассматривать разные варианты. Расчет индуктивности зависит от исходных данных и заданных конечных параметров.

Расчет L в зависимости от заданной конструкции

Если исходными параметрами являются: w, D каркаса и длина намотанного провода, то формула для расчёта имеет вид:

L = 0,01*D*w2/(l/D) + 0,46,

где:

  • D – диаметр каркаса, см;
  • w – число витков;
  • l – длина намотки, см;
  • L – индуктивность, мкГн.

Подставляя численные значения в формулу, получают значение L.

Расчет количества витков по индуктивности

Зная D каркаса и L, рассчитывают количество витков в катушке, формула имеет вид:

w = 32*√(L*D),

где:

  • L – индуктивность, мкГн;
  • D – диаметр каркаса, мм.

Если в качестве исходных параметров берутся длина навитого в ряд проводника и его диаметр, то количество витков находят, используя формулу:

w = l/d,

где:

  • l – длина намотки, мм;
  • d – диаметр провода, мм.

Измерения диаметра провода проводят линейкой или штангенциркулем.

Расчёт индуктивности прямого провода

Собираясь найти L круглого прямого проводника, обращаются к приближённой формуле:

L = (μ0/2π)*l*( μe*ln(l/r) + 1/4* μi,

где:

  • μ0 – магнитная постоянная;
  • μe – относительная магнитная проницаемость (ОМП) среды (для вакуума – 1);
  • μi – ОМП проводника;
  • l – длина провода;
  • r – радиус провода.

Формула справедлива для длинного проводника.

Расчёт однослойной намотки

Однослойные дроссели без сердечника легко и быстро можно рассчитать при помощи онлайн-калькулятора, в окно которого можно забить все известные характеристики, и программа выдаст значение L.

Вычисления проводятся и вручную, с использованием математического выражения. Оно имеет вид:

L = D2*n2/45D + 100*l,

где:

  • D – диаметр катушки, см;
  • l – длина намотанного провода, см;
  • n – количество витков.

Формула подходит для вычислений L дросселей без ферритовых сердечников.

Дроссель с сердечником

При наличии сердечника следует учесть его размеры и форму. В случае одинаковых катушках индуктивность больше у той, которая располагается на сердечнике.

Многослойная намотка

Особенности расчёта при подобном способе наматывания провода заключаются в том, что нужно учитывать его толщину. Формула для дросселя без сердечника имеет вид:

N²=(L*(3Dk+9l+10t))/0.008Dk²,

где:

  • Dk – общий диаметр (диаметр каркаса и намотки);
  • t – толщина слоя;
  • l – длина накрученного провода.

Все значения подставляют в мм, величину L – в мкГн.

Индуктивность в цепи постоянного тока

Для лучшего понимания происходящих процессов в катушке, рассмотрим, что происходит в катушке при подаче на нее постоянного напряжения.

t=3L/R,

где L – индуктивность катушки в генри, а R – общее сопротивление всей цепи в омах. Если, к примеру, индуктивность катушки L=0,6 Г, а сопротивление цепи R=60 Ом, тогда длительность переходного процесса будет равна: t=3•0,6/60=0,03 сек.

Будет интересно➡ Что такое электрический заряд и каковы его свойства?

При отключении батареи от катушки индуктивность тоже происходит переходный процесс (такой опыт с первичной обмоткой трансформатора показан на странице “Электромагнетизм” рис.е). В этом случае силовые магнитные линии будут приближаться к центру катушки опять пересекая ее витки. Создается ЭДС самоиндукции, которая уже направлена не против тока, а (опять же по правилу Ленца) совпадающая с направлением прерванного тока.

Если катушка имеет большую индуктивность (в нашем опыте катушкой является первичная обмотки трансформатора с большим количеством витков и значительным железным сердечником) и через нее протекал большой ток, то тогда ЭДС самоиндукции, появляющая на концах катушки индуктивности, может достигать величины во много раз больше напряжения источника питания. Это объясняется тем, что при размыкании питающей сети энергия, запасенная в магнитном поле катушки, не исчезает, а превращается в ток. Напряжение между концами катушки индуктивности может достигать таких значений, которое способно привести к пробою между обмотками, а так же выводу из строя полупроводниковых приборов. Это надо надо учитывать на практике при работе с приборами, имеющие катушки с большой индуктивностью через которые проходит значительный ток.

Устройство катушки

Более близким к идеализированному элементу — индуктивности — является реальный элемент электронной цепи — индуктивная катушка. В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электронного поля и преобразование электронной энергии в другие виды энергии, а именно в термическую. Количественно способность реального и идеализированного частей электронной цепи припасать энергию магнитного поля характеризуется параметром, именуемым индуктивностью.

Таким макаром термин «индуктивность» применяется как заглавие идеализированного элемента электронной цепи, как заглавие параметра, количественно характеризующего характеристики этого элемента, и как заглавие основного параметра индуктивной катушки.

Связь меж напряжением и током в индуктивной катушке определяется законом электрической индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости конфигурации потокосцепления катушки ψ и направленная таким макаром, чтоб вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

e = — dψ / dt

В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Интересно почитать: инструкция как прозвонить транзистор.

Магнитный поток Ф, пронизывающий любой из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток наружных полей Фвп: Ф — Фси + Фвп.

1-ая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, 2-ая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и неизменных магнитов. Если 2-ая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее именуют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ, так же как и магнитный поток Ф, может быть представлено в виде суммы 2-ух составляющих: потокосцепления самоиндукции ψси, и потокосцепления наружных полей ψвп

ψ= ψси + ψвп

Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана конфигурацией магнитного потока самоиндукции, и ЭДС, вызванной конфигурацией магнитного потока наружных по отношению к катушке полей:

e = eси + eвп,

тут еси — ЭДС самоиндукции, евп — ЭДС наружных полей.

Если магнитные потоки наружных по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.

Индуктивность в цепи переменного тока

Для опытов с постоянным током катушка индуктивности намотана тонким проводом с большим количеством витков. Это делается для того, чтобы при подаче на нее напряжения с мощного источника питания витки катушки не перегорели, т.к. при намотке витков толстым проводом сопротивление будет маленьким, а ток через нее большой (по закону Ома для постоянного тока I=U/R) и она может сгореть. Сопротивление катушки индуктивности постоянному току (которое можно измерить мультиметром) называется активным сопротивлением.

Будет иначе, если в цепь катушки подать переменный ток. При этом магнитное поле катушки индуктивности становится тоже переменным. На рисунке показано, как меняется магнитное поле при синусоидальном токе. Во время периода магнитное поле меняет как свою силу, так и свое направление по синусоидальному закону. А это значит, что при этом возникает ЭДС самоиндукции, которая, согласно правилу Ленца, будет препятствовать приложенному извне напряжению.

Рассмотрим график происходящих процессов в катушке индуктивности. При включения катушки в цепь переменного тока в первую четверть периода ( 0º-90º) на катушку поступает нарастающее напряжение и ее магнитное поле “расширяется”, накапливая магнитную энергию. Ток, в этот момент, противодействующей ЭДС самоиндукции, максимальный и противоположный по знаку с напряжением на катушке. За другую четверть периода (90º-180º), когда напряжение на катушке индуктивности уменьшается, магнитное поле “сворачивается”, индуцируя ЭДС самоиндукции, которое совпадает с направлением тока. Этот ток самоиндукции в катушке старается уже “помочь” уменьшающему переменному току сохранить достигнутый большой магнитный поток. В этот полупериод катушка индуктивности уже не потребляет, а отдает энергию обратно генератору. Следовательно, происходит постоянный обмен энергий между генератором и катушкой. А это означает, что средняя мощность потребления катушки равна нулю. Благодаря разнице фаз тока и напряжения в 90º, катушка индуктивности имеет реактивную мощность и, соответственно, реактивное сопротивление, как и конденсатор. Разница лишь в том, что в катушке индуктивности напряжение опережает ток, а в конденсаторе – наоборот. Реактивное (индуктивное) сопротивление катушки, в отличии от ее активного сопротивления, не вызывает безвозвратных потерь энергии.

Допустим, возьмем идеальную катушку, в которой не учитываются сопротивления провода и другие потери. Тогда катушка индуктивности окажет переменному напряжению индуктивное сопротивление XL,которое измеряется в омах и вычисляется по формуле:

где f – частота тока в герцах (Гц), а L – индуктивность катушки в генри (Г). Отсюда видно, что величина индуктивного сопротивления катушки зависит от частоты и индуктивности. Чем выше частота тока и больше индуктивность катушки, тем больше индуктивное сопротивление.

К примеру, найдем индуктивное сопротивление катушки индуктивностью 5Г на частоте 50Гц. XL=2π•50•5=1570 Ом. На частоте 1кГц эта катушка будет иметь индуктивное сопротивление 31кОм, а на 1МГц – 31МОм. На графике показана зависимость упомянутой катушки от частоты.

Теперь, зная значение индуктивного сопротивления, можно записать закон Ома при переменном токе через катушку:

Например,найдем ток, который протекает через идеальную катушку с индуктивностью L=500 мкГ, если ее подключить к переменному напряжению U=0,4 В и частотой f=500 кГц. I= 0,4/2•3,14•5•103•500•10-6=0,25 мА

В реальной катушке нужно учитывать не только индуктивное сопротивление, но и сопротивление потерь Rпот. На низких частотах Rпот равно только сопротивлению провода катушки. При повышении частоты на катушке сопротивление потерь будет возрастать за счет появления других потерь (вихревые токи, поверхностный эффект проводника и т.д.) (рис.а). Поэтому полное сопротивление катушки индуктивности переменному току на средних частотах равно: и называется импедансом. На высоких частотах начинает оказывать еще влияние cобственная (паразитная) емкость катушки Спараз, которая шунтирует индуктивность (рис.b).

Основными параметрами высокочастотных катушек индуктивности являются индуктивность, добротность и собственная емкость. Индуктивность зависит от количества витков, размера катушки и наличия ферромагнитного сердечника. Чем больше намотано витков на катушке, тем больше ее индуктивность. А наличие сердечника увеличит индуктивность катушки. Добротность определяет качество катушки индуктивности и равна отношению индукнивного сопротивления к сопротивлению потерь: Чем больше добротность, тем качественнее катушка. Катушкой хорошего качества считается катушка с добротностью от 50 до 200. Чтобы достигнуть такого качества используют следующие средства: – применением сердечников, при которых увеличивается индуктивность при меньшем числе витков катушки (т.е. уменьшается сопротивление провода); – увеличение толщины провода, что, правда, увеличит габариты катушки; – в диапазоне длинных и средних волн применение провода литцендрат, который состоит из определенного количества проволочек изолированных друг от друга. Собственная емкость катушки индуктивности обусловлена емкостью обмотки и является нежелательной. Для ее уменьшения применяются различные способы намотки катушки. Одним из способов является перекрестная намотка типа “универсаль” (рис.c). Так же применяется намотка витков не плотно друг к другу, а на определенном расстоянии с принудительным шагом)(рис.d,e).

Где применяется катушка (дроссель, индуктивность)

Люмен — единица измерения светового потока

Дроссели имеют примитивную конструкцию: просто намотанный витками на каком-либо сердечнике проводник. В то же время в таком приборе нечему ломаться. Также у дросселей широчайший функционал и десятки применений. Из всего этого следует, что в какой бы точке города ни находился человек, в радиусе 1 км от него всегда будут тысячи катушек индуктивности, настолько они распространены.

Катушка как электромагнит

Самое простое применение катушки – это электромагнит. С подобным применением каждый сталкивается, заходя в подъезд. Сила, удерживающая дверь на месте и препятствующая несанкционированному доступу чужака, берётся из электромагнита. Он находится сверху.

Электрический ток, проходя по виткам катушки, создаёт вокруг неё переменное электромагнитное поле. Оно возбуждает в металлическом «бруске», расположенном на двери, вихревые токи, которые так же создают магнитное поле. В результате получаются два управляемых магнита. Они притягиваются друг к другу. Тем самым дверь надёжно удерживается на месте.

Другое применение электромагнитов в быту – индукционные плиты. Катушка наводит в металлической посуде переменный высокочастотный ток. Он, в свою очередь, своим тепловым действием разогревает кастрюлю. В промышленности нечто подобное используется для разогрева и плавки металлов. Только в таком случае применяются на порядки более высокие мощности и другие частоты тока.

Индуктивность как фильтр

Импульсные блоки питания, электрические двигатели и диммеры для регулировки яркости ламп накаливания выбрасывают в сеть большое количество искажений и помех. Вызвано это неравномерностью потребляемого тока. Для борьбы с подобными сетевыми шумами применяются специальные фильтры на основе конденсаторов и дросселей.

Данный узел представляет собой небольшую катушку из медного эмалированного провода диаметром 0,2-2 мм. Обмотка наматывается на ферритовый сердечник. Чаще всего он изготовлен в форме кольца, немного реже встречаются так называемые «гантельки».

Подобные фильтры имеются в компьютерных блоках питания, компактных люминесцентных лампах (иногда не ставят, экономят), на выходах сварочных инверторов.

Также фильтр может быть звуковым. Его задача – срезать определённый диапазон частот. Индуктивные свойства этого прибора таковы, что он хорошо проводит низкие частоты, а высокие – приглушает. Поэтому дроссели используют для того, чтобы до динамиков дошёл только бас. По факту ослаблено будут слышны и другие частоты. Для более эффективной работы фильтра нужны дополнительные детали: конденсаторы и операционные усилители.

Катушка как источник ЭДС

Китайская промышленность удивила школьников 2000-х новой игрушкой – вечным фонариком. Его не нужно было заряжать. Фонарик работал от катушки индуктивности, около которой под действием движения рук перемещался магнит. Он наводил в обмотке переменную ЭДС, которая питала осветительный прибор.

Подобное явление объясняется законом электромагнитной индукции. Если проводник (рамка) находится в переменном электромагнитном поле, то в нём начинает наводиться электродвижущая сила. Иными словами, появляется напряжение.

Закон этот совсем неигрушечный, ведь он используется в работе генераторов на подавляющем большинстве электростанций, в том числе любые ТЭЦ, ГЭС, АЭС и ветряки. По подобному принципу работают динамомашины, питающие фары велотранспорта.

Две катушки – трансформатор

Ещё одно распространённое применение – это электрический трансформатор. Конструктивно он состоит из двух и более катушек, расположенных на одном железном или ферритовом сердечнике. Подобный агрегат работает только с переменным напряжением. Если на первичную обмотку подать ток, то он создаст в сердечнике магнитный поток. Он, в свою очередь, наведёт ЭДС во вторичной обмотке. Напряжения во входной и выходной катушках прямо зависят от количества их витков.

Таким образом, можно трансформировать 220 В из розетки в 12 В, необходимых для питания небольшой стереосистемы, или преобразовать 10 000 вольт в 220 для передачи от подстанции к жилым домам. Подобным методом можно добиться и повышения напряжения, т.е. превратить 12 В обратно в 220.

Катушка индуктивности — элемент колебательного контура

Сейчас это уже редкость, но раньше для подстройки нужной радиостанции использовали колебательный контур. Он состоит из двух элементов, включенных параллельно: катушки индуктивности и переменного конденсатора. Работая в паре, они способны выделить из множества окружающих сигналов именно тот, который требуется. При попадании на антенну приёмника нужной частоты электромагнитных волн колебательный контур входит в резонанс. Процесс сопровождается лавинообразным увеличением ЭДС. Частота, на которой это происходит, зависит от индуктивности катушки и ёмкости конденсатора.

Катушка индуктивности – дроссель ДРЛ ламп

Несмотря на то, что освещение улиц и промышленных предприятий стремительно переходит на LED светильники, по СНГ всё ещё осталось огромное количество мест, где используются устаревшие дуговые ртутные люминесцентные лампы типа ДРЛ. Более всего они распространены в мелких городах и на второстепенных улицах. Их можно узнать по характерному холодно-белому свету и долгому розжигу.

ДРЛ лампы не способны работать без пускорегулирующего дросселя. Он обладает высоким индуктивным сопротивлением и призван ограничить пусковой ток осветительного прибора. Дроссели для ламп подбираются, исходя из их мощности. Наиболее распространённые номиналы – 250, 400 и 1000 Вт. Информация о мощности указывается на самом дросселе. Там же можно найти схемы включения.

Из вышесказанного можно подчеркнуть, что катушка индуктивности является консервативным и давно освоенным на практике электронным компонентом. Однако спрос на его применение по-прежнему не спадает. Поэтому знания, необходимые для расчета катушек и их правильного включения, необходимы каждому специалисту, имеющему дело с электроникой.

Замер сопротивления и формула расчета

Замерить активное сопротивление катушки индуктивности можно только в обесточенном виде. Делается это при помощи мультиметра.

  1. Мультиметр надо перевести в режим омметра.
  2. Красный измерительный щуп соединить с первым выходом катушки.
  3. Черный измерительный щуп соединить со вторым выходом.
  4. Прибор покажет только активное сопротивление обмотки.

При помощи тестера можно определить только целостность витков. Если элемент включен в цепь под напряжением, то величину сопротивления находят за счет простого вычисления по формуле: Z=U/I.

Для расчета по этой формуле, при помощи тестера определяют сначала величину тока (I) и напряжения (U). Активное сопротивление измеряется в Омах.

Зная формулу расчета активного и индуктивного сопротивления, полное сопротивление элемента может быть найдено с помощью формулы:

Z= 2×(R×R+XL×XL)

В этом выражении R является активным сопротивлением, а XL — индуктивным.

Сопротивление проводника

Так почему бы все эти свойства не применить также к проводнику? Чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен.

Поэтому, окончательная формула будет принимать вид

формула сопротивления проводника

В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом × мм2 /м. Чтобы перевести в Ом × м, достаточно умножить на 10-6, так как 1 мм2=10-6 м2.

удельное сопротивление веществ

Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником. Ну а самым распространенными и дешевыми проводниками являются медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.

Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс .

Какое сопротивление называется емкостным формула?

После того, как учтены все перечисленные выше факторы, можно будет определить ёмкостное сопротивление конденсатора по следующей формуле: Xс=1/ ω C. Эта формула указывает на обратно пропорциональную зависимость сопротивления от величины ёмкости и частоты питающего напряжения.

Интересные материалы:

Можно ли заменить Touch ID? Можно ли замораживать артишок? Можно ли заморозить баклажаны и кабачки? Можно ли заморозить баклажаны? Можно ли заморозить дыню? Можно ли заморозить грибы рыжики? Можно ли заморозить стрелки чеснока на зиму? Можно ли заниматься деятельностью Если нет Оквэд? Можно ли заниматься спортом после операции на мениске? Можно ли записывать на диктофон без ведома?

Катушка

Катушка индуктивности представляет собой металлический или ферритный сердечник, на который намотано несколько витков медного провода. Элемент обладает следующими свойствами:

  1. За счет индуктивности ограничивается скорость изменения токов.
  2. С увеличением частоты тока катушка способна увеличить свое сопротивление (скин-эффект).
  3. Создает магнитное поле.
  4. Увеличивает и накапливает напряжение.
  5. Создает сдвиг фаз переменного тока.
  6. Пропорционально скорости движения тока создает ЭДС самоиндукции.

Все эти свойства находят применение при разработке радиоприемных устройств, генераторов частоты, тестеров, магнитометров и других видов сложного оборудования.

Активное сопротивление

Катушка индуктивности, не подключенная к электрической цепи, имеет только активное сопротивление.

Оно создается медным проводом и зависит от его длины, сечения. Активное сопротивление способно нарастать только после подключения в цепь. В этом случае процессы, протекающие внутри элемента, зависят от типа тока.

Какие отличия

Отличия этих типов электросопротивления в том, что «внутри» активностного типа энергия не накапливается, так как она попадает в активностый элемент и отдается окружающей среде в виде другого ее типа. Это может быть тепло или механическое поднятие груза, свечение, химическая реакция, задание чему-либо скорости.

Важно! Преданная электроэлементу с активностным электросопротивлением энергия преображается и конвертируется, но не возвращается в сеть. Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть

То есть, в окружающую среду полученная энергия не передается

Сопротивляемость же реактивная, наоборот, копит энергию внутри себя за ¼ всего периода синусоидального электротока, а за следующую четверть возвращает ее обратно в сеть. То есть, в окружающую среду полученная энергия не передается.

В активностном типе фазы электрических токов и напряжения совпадают, следовательно, выделяется некоторое количество электроэнергии. В реактивном виде фазы электротока и напряжения расходятся, поэтому энергия передается обратно. Это во многом объясняет то, что активностные электроэлементы нагреваются, а реактивные — нет.

Емкостная проводимость

Одним из эксплуатационных показателей остается данный параметр, обозначающий емкость между проводниками и землей, а также аналогичный показатель между самими токопроводниками.

Для его определения в трехфазной линии воздушных передач применяется выражение:

Можно увидеть прямую зависимость рабочей емкости от уменьшения расстояния между кабелями и их сечения. Следовательно, для линий низкого напряжения данная величина всегда будет больше, чем для высокого.

Проводимость подобного вида в воздушных линиях одноцепной конструкции рассчитывается так:Токи емкостного происхождения существенно влияют на работу линий с рабочими характеристиками напряжения лот 110 кВ и более, а также в магистралях уложенными кабелями с идентичными параметрами выше 10 кВ.

Попытка применить именно подобный способ для самостоятельного выполнения будет весьма непростой задачей, ведь в нем применяются и различные конструктивные нюансы типа геометрических характеристик, и диэлектрическая проницаемость изоляционного слоя, и многие другие вводные. Следовательно, оптимальным решением будет информация из таблиц, составленных производителями для конкретной марки кабеля. В каталогах все данные приведены с учетом номинального напряжения для каждой модификации.

Для начала линии, когда мы имеем дело с холостым ходом, емкостный ток определяется так:

Данный показатель будет объективным только при полностью обесточенных приемниках электричества.

Большое значение обозначенная емкость в любой рассматриваемой конструкции имеет для точного выполнения предварительных расчетов для устройств компонентов защиты и элементов заземления.

Для воздушной линии действительна такая формула:

Для кабельных магистралей:

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]