Защита сборных шин. Виды повреждений шин. Дифференциальная защита шин. Неполная дифференциальная защита шин. Автоматическое повторное включение шин. Особенности АПВ шин. Логическая защита шин (ЛЗШ).


Как работает логическая защита шин

6.19. Логическая защита шин (ЛЗШ)
Назначение: Общесекционная защита, обеспечивающая отключение вводного

выключателя с меньшей выдержкой времени срабатывания при замыкании на секции шин.

Применяется для МКЗП, обслуживающих вводные выключатели распределительных устройств.

Алгоритм ЛЗШ применяется в распределительных устройствах для анализа места возникновения замыкания – на шинах либо на отходящей линии – и, соответственно, быстрого отключения вводного выключателя при замыкании на шинах.

Алгоритм ЛЗШ работает с сигналом «Пуск МТЗ», сформированным собственным блоком МКЗП, а также сигналами «Пуск МТЗ» блоков МКЗП устройств секции шин (далее -«Пуск МТЗ сш»). Внимание – для корректной работы алгори должны быть настроены на срабатывание от первой ступени МТЗ.

При возникновении сигнала «Пуск МТЗ» собственного блока и отсутствии сигналов «Пуск МТЗ сш» (т.е. возникновении КЗ на шинах, а не отходящей линии), после выдержки времени, задаваемой временной уставкой, формируется «Сраб. ЛЗШ» на отключение и блокировку включения выключателя и сигнализацию. На индикаторе блока выводится сообщение «СРАБОТАЛА ЗАЩИТА Срабат.ЛЗШ», на лицевой панели мигают светодиоды «ОТКЛ» и «АВАРИЯ». Вводится блокировка последующего включения выключателя, которая потом выводится нажатием кнопки «СБРОС». Формируется аварийный протокол «Срабат.ЛЗШ».

При замыкании на отходящем присоединении срабатывание ЛЗШ блокируется сигналом «Пуск МТЗсш».

Пример работы ЛЗШ показан на рисунке. На верхних графиках показаны токи вводного (сверху, зеленым) и отходящего (снизу, красным) распределительных устройств. Ниже показаны сигналы «Пуск МТЗ» отходящего РУ (СШ), «Пуск МТЗ» вводного РУ (в приведенных примерах сигналы «Пуск МТЗ» настроены на работу от МТ31), а также сигнал срабатывания ЛЗШ.

На графиках в левой части показаны процессы при замыкании на отходящей линии. При этом ток распределительных устройств возрастает – и для РУ-ОТ, и для РУ-В становится выше уставки МТ31, алгори срабатывают, формируя соответствующие сигналы. Алгоритм ЛЗШ, получая оба сигнала, не срабатывает. Аварийный процесс прекращается после отключения отходящей линии собственной защитой МТ31. При этом РУ-В остается включенным, поскольку временная уставка МТ31 РУ-В, выставленная из соображений селективности работы защит, больше, чем уставка МТ31 РУ-ОТ.

На графиках в правой части показаны процессы при замыкании на шинах распределительного устройства (между РУ-В и РУ-ОТ). При этом ток РУ-В возрастает выше уставки МТ31, формируется сигнал «Пуск МТЗ». Ток РУ-ОТ остается ниже уставки МТЗ, поэтому сигнал «Пуск МТЗ сш» не формируется. Наличие сигнала «Пуск МТЗ» при отсутствии «Пуск МТЗ сш» – условие запуска алгоритма ЛЗШ. Поскольку в течение выдержки времени Тср ЛЗШ – временной уставки алгоритма – сигналы не изменились – ток вводного шкафа не упал ниже уставки, а отходящих линий – не вырос, происходит отключение РУ-В по ЛЗШ.

При этом следует обратить внимание, что, если алгоритм ЛЗШ выведен, отключение произойдет только по истечении уставки МТ31 РУ-В, как показано на верхнем графике.

Для корректной работы алгори должен быть введен и настроен на срабатывание от МТЗ 1.

Уставка Т – независимая выдержка времени, выбирается нулевой, либо с небольшой задержкой для отстройки от помех и случайных срабатываний. Но в любом случае должна быть ниже уставки срабатывания МТ31

МТЗсш1/МТЗсшО – сервисная уставка, для корректной работы алгоритма должна быть установлена в положение МТЗсшО

Ввод/вывод защиты производится программным переключателем «введен/выведен».

Источник: sinref.ru

Микропроцессорные устройства защиты и автоматики для сетей 35-10(6) кВ РЗЛ-02

  • Защита, автоматика, управление, измерение, регистрация и сигнализация присоединений 35-10(6) кВ: воздушных и кабельных линий электропередач, а также двигателей.
  • Резервная защита оборудования 110 (220) кВ, в том числе защита тупиковых ВЛ 110 (220) кВ.

Устройства защиты, автоматики, управления, регистрации и сигнализации линий 35-10(6) кВ

  • Возможность гибкого программирования устройств
  • Реализация необходимой конфигурации в течение 14 дней с момента оформления заказа
  • Надежность конструкции
  • Простота обслуживания
  • Современные цифровые технологии и микропроцессорная техника

Область применения

  • КРУ собственных нужд электростанций
  • Распределительные подстанции сетевых предприятий
  • Линии электропередачи распределительных сетей
  • Промышленные и коммунальные предприятия
  • Объекты нефтегазового комплекса
  • Тяговые подстанции железных дорог и метрополитена
  • Предприятия горнодобывающей промышленности
Основные функции
ЗащитыАвтоматики
МТЗ – максимальная токовая защита ЗНЗ – защита от однофазных замыканий на землю ЗМН – защита минимального напряжения ЗПН – защита от повышения напряжения ЗОФ – защита от обрыва фаз и несимметрии нагрузки ЗСН – защита от снижения напряженияАВР – Автоматическое включение резерва АПВ – Автоматическое повторное включение УРОВ – Резервирование отказа выключателей ЛЗШ – Логическая защита шин АЧР / ЧАПВ – Выполнение команд внешнего устройства частотной разгрузки. Контроль частоты.

Измерение, регистрация, сигнализация

  • Индикация действующих значений токов и напряжений основной частоты (50±5 Гц)
  • Индикация действующих значений тока 3I0 в полосе частот от 45 до 150 Гц
  • Индикация фазовых сдвигов между основными гармониками фазного тока каждой из фаз и линейным напряжениям между двумя другими фазами
  • Расчет токов нулевой и обратной последовательности
  • Индикация частоты
  • Регистрация и хранение осциллограмм, параметров аварийных событий
  • Функция календаря и часов астрономического времени с энергонезависимым питанием
  • Сигнализация о состоянии устройства и о срабатывании защит осуществляется с помощью свободно назначаемых реле и светодиодов, а также по каналу АСУ

Варианты исполнений РЗЛ-02 в зависимости от защищаемого присоединения или электрооборудования:

  • РЗЛ-02-ВВ – для выключателей вводов ВЛ 35 кВ
  • РЗЛ-02-Л – для кабельных и воздушных линий 10(6) кВ
  • РЗЛ-02-СВ – для секционных выключателей 35-10(6) кВ

Функции защиты

Максимальная токовая защита (МТЗ) Многоступенчатая, с ускорением, с пуском по напряжению и контролем U

Входной номинальный трехфазный ток, Iн, А5
Диапазон уставок срабатывания и возврата по току, A0,05-125
Дискретность уставок по току срабатывания, A0,01
Потребляемая мощность токовой цепью на каждую фазу, ВАне более 0,4
Определение угла сдвига токов и напряжений0°…360°
Угол максимальной чувствительности0°…90°

Защита от однофазных замыканий на землю (ЗЗН) Ненаправленная, с независимой характеристикой, с одной или двумя выдержками времени.

Диапазон уставок по току нулевой последовательности, А0,01…4
Дискретность уставок по току нулевой последовательности, А0,01

Смена программ уставокРЗЛ-02 обеспечивает хранение двух наборов уставок и программных ключей функций. Смена программ производится подачей на дискретный вход РЗЛ-02 дискретного сигнала ими командой по последовательному каналу.

Защита от несимметрии и от обрыва фазы питающего фидера (ЗОФ) Реализуется методом расчета тока обратной последовательности I2.

Алгоритм встречно-направленной логической защиты шин

Николай Васильевич Чернобровов писал: «Создание селективных быстродействующих защит является важной и трудной задачей техники релейной защиты. Эти защиты получаются достаточно сложными и дорогими, поэтому они должны применяться только в тех случаях, когда более простые защиты, работающие с выдержкой времени, не обеспечивают требуемой быстроты действия…»

Логика современных цифровых защит в настоящее время строится путем реализации алгоритмов – аналогов существующих реле предыдущих поколений. И хотя эти алгоритмы надежны и проверены временем, к сожалению, не всегда оптимальны.

ПУЭ регламентирует: «В качестве защиты сборных шин электростанций и подстанций 35 кВ и выше следует предусматривать, как правило, дифференциальную токовую защиту без выдержки времени, охватывающую все элементы, которые присоединены к системе или секции шин…».

Как показывает опыт, высокая стоимость современных цифровых терминалов релейной защиты подталкивает заказчика в ряде случаев к отказу от дифференциальной защиты шин и поиску альтернативных вариантов. Такая тенденция вкупе с широкими возможностями микропроцессорных устройств дает основания для размышлений на эту тему.

Нам довелось принимать участие в проектировании подстанции, на стороне среднего напряжения которой предусматривалась возможность дву-стороннего питания. И хотя применение дифференциальной защиты в условиях многостороннего питания представляется, безусловно, наилучшим, ввиду высокой стоимости – нецелесообразным. Логическая защита шин в ее классическом понимании неприменима, так как возможно ее неселективное действие. Например, при КЗ в трансформаторе.

Сегодня активно развивается малая энергетика. Для обеспечения бесперебойного электроснабжения, например, потребителей газовой отрасли к шинам низкого напряжения подключаются ГТУ небольшой мощности (до 12 МВт), работающие на попутном газе. Похожая ситуация в нефтяной отрасли, и не только. При этом количество подключаемых генераторов может превышать 5 штук. При замыкании в любом из питающих элементов возможно нарушение селективности классической ЛЗШ. Кроме того, при постоянно включенном секционном выключателе и замыкании на защищаемой секции с первой выдержкой времени будет отключаться секционный выключатель и лишь с двойной – ввод.

Известно, в условиях многостороннего питания применяются направленные токовые защиты. В простейшем виде – с реле направления мощности прямой последовательности. У направленных токовых защит на электромеханической и полупроводниковой элементной базе есть свои недостатки. Первый – наличие так называемой «мертвой зоны», что и предопределило их применение в основном для защиты линий. Второй – большие выдержки времени, особенно на источниках питания (впрочем, это относится ко всем токовым защитам с временной селективностью).

В микропроцессорных устройствах защиты эффект «мертвой зоны» устранен, например, с помощью «контура» памяти.

Предлагается для обеспечения селективности в устройстве защиты любого явного или потенциального «источника» использовать орган направления мощности. От него должно обеспечиваться два управляющих воздействия – в зависимости от знака мощности – «свой» или «чужой». «Свой» – при направлении мощности из защищаемого элемента, «чужой» – внутрь защищаемого элемента.

Разновидности дуговой защиты

Существуют два типа защиты от дуговых замыканий: механическая (клапанная и мембранная) и электронная (фототиристорная и волоконно-оптическая).

Клапанная ЗДЗ

В защитном устройстве данного типа находится датчик в виде клапанов с выключателями, срабатывающий на повышение давления воздуха в результате появления дуги. Нарастание давления в ячейке способствует выбиванию крышки, которая замыкает контакт датчика (клапана), и происходит защитное отключение оборудования от сети.

Клапанная ЗДЗ проста в исполнении и обслуживании, отличается доступной ценой, надежностью при токах КЗ свыше 3кА. Но в связи с тем, что реле реагирует не на саму дугу, а на ее последствия (повышение давления), то при небольших токах КЗ имеет не вполне высокую чувствительность и несколько длительное время срабатывания.

Мембранная защита от дуги

ЗДЗ мембранного типа наделена шлангами, которые подведены к отсекам ячеек распредустройства. Система шлангов объединена через вентили обратного давления и подключена к мембранному выключателю, который срабатывает при повышении давления воздуха, создаваемого дугой.

Фототиристорный тип дуговой защиты

Относится к электронному виду защиты от дуговых замыканий, реагирует на вспышку от электрической дуги с помощью датчика, в качестве которого применяется полупроводниковый прибор – фототиристор.

Дуговая защита на основе фототиристорных датчиков обладает относительно высокой чувствительностью и быстротой реагирования. Однако их невозможно установить для полного обзора, трудно учесть организационные нюансы при контроле исправности. Также фототиристоры могут ложно срабатывать из-за токов утечки, прямых солнечных лучей или включенных ламп освещения.

Волоконно-оптическая ЗДЗ

Следующим представителем электронной защиты от дуговых замыканий является волоконно-оптический вид ЗДЗ – наиболее современный и качественный. Датчики размещают в отсеках ввода, выкатного элемента, в кабельном отсеке. Волоконно-оптическая линия связи служит передающим звеном при срабатывании датчика на вспышку дуги. Микропроцессорный терминал, получив сигнал от датчика, подает команду на отключение выключателей для устранения короткого замыкания.

Важно! Данные устройства релейной защиты наделены достоинствами фототиристорных ЗДЗ и не имеют их уязвимых характеристик. Высокая стоимость волоконно-оптических приборов оправдана эффективностью, надежностью и качеством

Лучшим представителем представленной защиты является прибор “Лайм”, имеющий самые эффективные технические характеристики:

  • реагирование (быстродействие) – 0,7-0,9 мс, то есть выше в 10 раз, чем в обычных устройствах;
  • время начала срабатывания – 40 мс;
  • длительность работы после отключения (инерция) – 3 с;
  • благодаря возможности подключения трех датчиков, достигается угол обзора более 1800С.

С целью экономии средств на монтаж оптической ЗДЗ выбирают рациональный вариант построения защиты, объединяя одноименные зоны: отсеки шинного моста, выключателей, трансформаторов тока. В зависимости от особенностей схемы, также применяют объединение разноименных зон.

Дуговая защита является необходимостью при эксплуатации энергооборудования. Особенно это требуется на предприятиях, в учреждениях и организациях, от бесперебойного электроснабжения которых зависят важные человеческие и технические факторы

Применение надежной и качественной системы защиты от электрической дуги избавит от рисков работу оборудования стратегической важности, а также жизнь и здоровье большого количества людей

Релейная защита

Отличительными особенностями работы энергосистем являются:

  • Быстрота;
  • Взаимосвязанность;
  • Согласованность процедур производства, распределения и потребления электрической энергии.

Для управления всеми процессами в энергосистеме используются специальные средства автоматического управления. Все используемые устройства автоматики по своему предназначению и области применения подразделяются на два класса:

  1. Местная и системная технологическая автоматика;
  2. Местная и системная противоаварийная автоматика.

Предназначение системной технологической автоматики заключается в обеспечении нормальной работы аппаратуры, а именно:

  • Запуск блоков турбина-генератор и включение в работу синхронных генераторов;
  • Автоматическое регулирование напряжения и реактивной мощности на шинах электростанции;
  • Автоматическое регулирование частоты и обеспечение режима заданной нагрузки электростанции;
  • Оптимальное распределение электрической нагрузки между блоками;
  • Регулирование напряжения в распределительной сети;
  • Регулирование частоты и перетекания мощности.

Системная противоаварийная автоматика предназначена для предотвращения и наиболее эффективной ликвидации последствий аварий, а именно:

  • Защита электрического оборудования от короткого замыкания и нестандартных способов работы;
  • Самостоятельное включение после ликвидации неисправности;
  • Самостоятельное включение резервного оборудования;
  • Автоматическая разгрузка по частоте;
  • Автоматическое устранение асинхронного режима;
  • Самостоятельное предупреждение перебоев устойчивости.

Главную роль среди устройств аварийной аппаратуры занимает релейная защита, которая оценивает поведение электрической питающей системы и ее компонентов в режимах больших негативных влияний и резких скачков электрических характеристик.

Негативные реакции могут быть вызваны рядом факторов, а именно:

  • Пробоем или замыканием изолирующих элементов линий электропередач ввиду грозовых воздействий или при их загрязнении;
  • Разрывом проводов или грозозащитных заземлений из-за намерзания льда или больших колебаний;
  • Механической деформацией опор, повреждением изоляторов, схлестыванием проводов;
  • Некомпетентными действиями оперативного персонала;
  • Заводским браком оборудования.

Основными задачами релейной защиты являются:

  1. Самостоятельное обнаружение неисправного элемента с последующей его изоляцией. Защитная система сообщает сигнал на срабатывание выключателей этого компонента, создавая приемлемые условия работы для нетронутой части энергетической системы;
  2. Самостоятельное обнаружение необычного режима работы с использованием мер для его исправления. Отклонение от привычного режима первостепенно вызывается разными перегрузками, отключение которых не обязательно. Разгрузив оборудование, защита сообщает этот сигнал ошибки оперативному персоналу.

Логическая защита шин

Схема логической защиты шин

Логическая защита шин является следствием модернизации релейной защиты. Основной областью применения лзш являются радиальные распределительные сети от 6 кВ до 35 кВ. Основными причинами использования защитной логики шин выступают малое время для отключения КЗ на шинах, а также ее дешевизна. Время срабатывания лзш составляет 0,1-0,15 с.

К преимуществам цифровой защиты шин перед другими устройствами относятся:

  1. По принципу работы дифференциальная защита подразумевает использование вспомогательных обмоток трансформаторов тока на всех стыковках секции, которые необходимо соединить с дифференциальным реле. Само реле при коротком замыкании складывает токи, приходящие на шины от фидеров питания, и токи отходящих присоединений и при дисбалансе дает сигнал на блокировку реле. В этом заключается сложность и недостаточная надежность оборудования;
  2. Для защиты шин широко используется максимальная токовая защита питающих линий. Согласно принципу действия данной защиты, время ее срабатывания составляет 1-3 секунды. За столь длительное время дуга тока при коротком замыкании принесет непоправимый урон оборудованию.

Логическая защита шин является неотъемлемой частью любого микропроцессорного терминала релейной защиты аппаратуры.

Среди всех используемых защит в энергетических системах лзш качественно отличается надежностью и быстродействием. Аппаратура логической защиты постепенно вытеснит электромеханическую элементную базу, что только положительно отразится на безопасности энергетических систем в целом.

Необходимость дуговой защиты вызвана несовершенством токовой

Несмотря на требования пунктов ПУЭ п.3.3.31, п.3.3.42 о применении АПВ шин и АВР после ликвидации КЗ внутри отсеков КРУ, сегодня проектные организации и эксплуатирующие предприятия обоснованно сомневаются в необходимости выполнения этих требований и предпочитают блокирование АПВ шин и АВР при срабатывании дуговой защиты КРУ. Такое решение обосновано отрицательным опытом применения АПВ шин среднего напряжения у эксплуатирующих организаций. Обоснован ли этот подход? Обеспечивают ли существующие решения защит отключение дугового КЗ за время, в течение которого не возникает критичных повреждений внутри КРУ?Токовые ступенчатые защиты не могут быть использованы в качестве быстродействующей защиты от дуговых замыканий вследствие больших значений выдержек времени на питающих присоединениях (обычно более 0,5 с).С целью сокращения времени действия токовых защит на питающих присоединениях применяют логическую защиту шин (ЛЗШ), принцип действия которой основан на передаче блокирующих сигналов от устройств защиты отходящих присоединений. Однако, и в этом случае время срабатывания защиты превышает допустимое значение. Выдержка времени ЛЗШ обычно составляет не менее 100мс.

ЛЗШ обладает рядом недостатков:

  • отсутствие срабатывания при КЗ в «мертвой зоне» отсека подключения кабеля вводной ячейки КРУ;
  • возможные отказы ЛЗШ, связанные с излишним блокирование защиты в случае подпитки места КЗ от мощных синхронных электродвигателей (с целью устранения данного недостатка возможно применение более сложной схемы защиты с использованием цепей напряжения и контролем направления мощности на отходящих линиях);
  • возможные отказы ЛЗШ в сетях с низкоомным резистивным заземлением нейтрали, в которых ток замыкания на землю при КЗ на корпус КРУ может быть меньше уставки токовой защиты.

Таким образом, ЛЗШ также не может быть использована в качестве быстродействующей защиты КРУ от дуговых замыканий.

ЛЗШ – логическая защита шин, принцип действия, назначение, реализация

Первый вариант – применение дифференциальной защиты. Для ее реализации потребуются дополнительные обмотки трансформаторов тока на всех присоединениях секции. Их нужно соединить с дифференциальным реле, задача которого – в момент КЗ сложить токи, входящие на шины от фидеров питания и токи на отходящих присоединениях. В случае превышение током небаланса величины уставки реле дает команду на отключение.

Система получается очень сложной, но со сложностью падает ее надежность.

К тому же трансформаторы тока с дополнительными обмотками дороже. Накладываются ограничения по проверкам РЗА присоединений: при случайной подаче тестового тока на него защита сработает ложно.

Вариант с использованием неполной дифференциальной защитой шин тоже не является достаточно эффективным.

Он отличается от предыдущего тем, что используются трансформаторы тока только питающих линий и мощных потребителей. Но его применение, ко всему прочему, сильно ограничено.

Следующая возможность защитить шины – МТЗ питающих линий. В принципе, его и выполняют в подавляющем большинстве случаев. Но у этого вида защиты есть существенный недостаток. Для отстройки МТЗ от коротких замыканий на отходящих присоединениях ее выдержка времени должна быть больше, чем у МТЗ потребителей. На практике это 1 – 3 секунды.

С увеличением тока КЗ каждая секунда его действия становится фатальной для электрооборудования. Чем дольше горит дуга, тем больше разрушений она приносит.

Надежность ЛЗШ

В отличие от других защит, ЛЗШ редко срабатывает при проверках РЗА персоналом электролабораторий. При работе на отходящих присоединениях сигнал блокировки, хоть и поступает на входы терминалов линий питания, но вреда не приносит. Возможен только отказ в работе при совпадении фактора наличия проверочного тока на отходящем фидере и реальном КЗ на шинах, но вероятность такого казуса невелика.

При проверке РЗА питающей линии тем более ничего не произойдет. Если на шины приходит питание через секционный выключатель или другую линию питания, то их логические защиты работают независимо от проверяемой линии питания, достучаться до них оттуда нереально.

Этим ЛЗШ выгодно отличается от дифференциальных защит, работая в зоне действия которых можно ошибочно устроить масштабную техногенную аварию.

Отказы в работе ЛЗШ связаны, в основном, с короткими замыканиями на выводах трансформаторов тока. Дифференциальные защиты шин определяют КЗ на них с помощью реле, установленных в каждой фазе. Любое из реле, сработав, даст команду на отключение. В случае же с ЛЗШ наоборот: если через трансформатор тока любой из фаз отходящего фидера пойдет ток КЗ, сформируется сигнал блокировки.

Поэтому, если при КЗ в комплектной ячейке дуга перескочит за выводы трансформатора, произойдет отказ ЛЗШ. И замыкание будет устранено только с выдержкой времени МТЗ питающего фидера.

На рисунке 1 приведена простейшая схема логической защиты шин в комплексе с МТЗ на вводе 10 кВ.

При КЗ на шинах или на отходящей линии пускается защита на вводе от питающего трансформатора (срабатывает реле KA).

МТЗ на вводе отстроена по времени от защит отходящих линий и действует на отключение выключателя в двух случаях:

— отказе защит или выключателя отходящей линии;

— коротком замыкании на сборных шинах.

Рисунок 1. Схема логической защиты шин

При коротком замыкании на любой отходящей линии (КЛ1 – КЛn) срабатывает токовое реле KA1 в ее схеме и токовое реле KA в схеме ввода. Контактами KA1 блокируется действие защиты на реле KL.

При КЗ на шинах срабатывает реле KA в схеме ввода и нет срабатывания ни одного из реле KA1 в схемах отходящих линий. Реле KL срабатывает и действует на отключение выключателя ввода с запретом АПВ.

Схема достаточно простая, но имеет ряд недостатков:

1. При выводе в проверку защиты любого присоединения разрывается вся цепь, защита выводится из работы.

2. Большое количество последовательно соединенных элементов снижает надежность схемы в целом. Нарушение контакта в любом токовом реле или в соединительных проводах приводит к отказу защиты.

Более удобна и надежна схема, приведенная на следующем рисунке. Токовые реле всех отходящих линий соединены параллельно. Для исключения случайного срабатывания защиты при проверках РЗА присоединений включается последовательно с контактами собственных выключателей. В данном случае реле KL выступает в роли блокирующего.

Рисунок 2. Схема логической защиты шин

Из чего состоит ЛЗШ

Элементы логической защиты шин не сосредоточены в одном месте. Это система, объединяющая терминалы защит питающих и отходящих линий.

Терминалы секционных выключателей получают сигнал блокировки ЛЗШ от присоединений обоих секций, которые они соединяют. Для этого используются разные дискретные входы.

Поведение ЛЗШ при внешнем КЗ

При внешнем коротком замыкании запускается МТЗ присоединения, на котором оно произошло. Естественно, отключение произойдет по истечении выдержки по времени, предусмотренной для данного тока замыкания.

Но, при наличии ЛЗШ, терминал выполнит еще одну задачу: выдаст сигнал ее блокировки.

Он поступит на терминалы фидеров, питающих секцию.

На этих терминалах, если произойдет срабатывание МТЗ, запустится ЛЗШ. Именно в них она настроена на отключение, на отходящих элементах оно не нужно, их задача – только передача сигнала о том, что КЗ находится в их зоне действия, и они готовы его ликвидировать.

Появление сигнала блокировки приведет к тому, что ЛЗШ на терминалах питающих линий остановится, и отключения не произойдет.

В случае отказа МТЗ отходящей линии короткое замыкание будет устранено МТЗ питающего фидера или УРОВ. За отказ ЛЗШ не отвечает.

Работа ЛЗШ при КЗ на шинах

Если короткое замыкание произошло на шинах РУ, сигнала блокировки от отходящих линий не поступит, так как ток КЗ через них не проходит. Запуск МТЗ питающих шины линий при отсутствии сигнала блокировки приведет к мгновенному действию ЛЗШ на отключение присоединений. Причем отключатся независимо друг от друга все выключатели, через которые в данный момент осуществляется питание. Если помимо ввода включен секционный выключатель, то ЛЗШ сработает и на нем.

Защита носит название логической именно потому, что ее работа связано с анализом места КЗ в системе: если ни один терминал отходящей линии не видит замыкание, значит – оно на шинах.

Зона, охваченная защитой, ограничивается местами установки трансформаторов тока всех присоединений секции. В этом она похожа на дифференциальную защиту шин, реализованную классическим образом. При срабатывании ЛЗШ формируется сигнал запрета АВР на поврежденную секцию.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]