Описание процесса отключения электрической цепи переменного тока при коротком замыкании
При размыкании контактов выключателя ток не прерывается. Согласно закону Ленца в цепи возникает ЭДС ЕL=-Ldi/dt, препятствующая изменению тока. Последний находит для себя путь через газовый промежуток между расходящимися контактами выключателя, который перекрывается электрической дугой. Чтобы прервать ток, дуга должна быть погашена. В цепях переменного тока благоприятные условия для гашения дуги возникают каждый раз, когда ток приходит к нулю, т.е. 2 раза в течение каждого периода. Диаметр дугового столба, температура и ионизация газа резко уменьшаются. В некоторый момент времени ток приходит к нулю и дуговой разряд прекращается. Однако цепь еще не прервана.
После нуля тока в газовом промежутке, еще в некоторой мере ионизованном, продолжается процесс деионизации, т.е. процесс превращения его из проводника в диэлектрик, а в электрической цепи начинается процесс восстановления напряжения на контактах выключателя от относительно небольшого напряжения на дуге до напряжения сети. Эти процессы взаимосвязаны. Исход взаимодействия дугового промежутка с электрической цепью зависит от соотношения между энергией, подводимой к промежутку, и потерями энергии в нем, зависящими от дугогасительного устройства выключателя.
Если в течение всего переходного процесса потери энергии преобладают, дуга не возникнет вновь и цепь будет прервана. В противном случае дуга возникнет вновь и ток будет проходить еще в течение половины периода, после чего процесс взаимодействия повторится. Функция выключателя заключается не столько в том, чтобы «погасить» дугу, а скорее в том, чтобы исключить возможность ее нового зажигания путем эффективной деионизации промежутка различными искусственными средствами. При этом используется исключительное свойство газа — быстро, в течение нескольких микросекунд, превращаться из проводника в диэлектрик, способный противостоять восстанавливающемуся напряжению сети.
Для понимания устройства и работы выключателей необходимо ознакомиться с физическими процессами в дуговом промежутке в процессе отключения. В этой статье рассмотрены методы гашения дуги в воздушных и масляных выключателях.
Физические процессы в дуговом промежутке выключателя при высоком давлении
Электрической дугой, точнее дуговым разрядом, называют самостоятельный разряд в газе, т.е. разряд, протекающий без внешнего ионизатора, характеризующийся большой плотностью тока и относительно небольшим падением напряжения у катода. Ниже рассмотрена дуга высокого давления, т.е. дуговой разряд при атмосферном и более высоком давлении.
Различают следующие области дугового разряда:
- область катодного падения напряжения;
- область у анода;
- столб дуги.
Область катодного падения напряжения представляет собой тончайший слой газа у поверхности катода. Падение напряжения в этом слое составляет 20-50 В, а напряженность электрического поля достигает 105106 В/см. Энергия, подводимая из сети к этой области, используется на выделение электронов с поверхности катода.
Механизм освобождения электронов может быть двояким:
- термоэлектронная эмиссия при тугоплавких и огнеупорных электродах (вольфрам, уголь), температура которых может достигнуть 6000 К и выше
- автоэлектронная эмиссия, т.е. вырывание электронов из катода действием сильного электрического поля при «холодном» катоде.
Плотность тока на катоде достигает 3000-10000 А/см5. Ток сосредоточен на небольшой ярко освещенной площадке, получившей название катодного пятна. Освобождающиеся электроны движутся через дуговой столб к аноду.
У анода положительные ионы приобретают ускорение в направлении к катоду. Электроны уходят в анод и образуют в тонком слое отрицательный заряд. Падение напряжения у анода составляет 10-20 В.
Процессы в дуговом столбе представляют наибольший интерес при изучении выключателей, поскольку для гашения дуги используют различные виды воздействия именно на дуговой столб. Последний представляет собой плазму, т.е. ионизованный газ с очень высокой температурой и одинаковым содержанием электронов и положительных ионов в единице объема.
Высокую температуру в дуговом столбе создают и поддерживают электроны и ионы, участвующие в тепловом хаотическом движении нейтральных молекул и атомов, но имеющие также направленное движение в электрическом поле вдоль оси дуги, определяемое знаком заряда частиц. Этому движению препятствует нейтральный газ. Происходят частые соударения электронов и ионов с нейтральными частицами. Поскольку длина свободного пробега электронов при высоком давлении мала, потеря энергии при упругих столкновениях с молекулами и атомами, приходящаяся на каждое столкновение, мала и недостаточна для ионизации частиц. Однако число столкновений, претерпеваемых электронами, весьма велико. В результате энергия электронов передается нейтральному газу в виде тепла.
Средняя энергия «электронного газа» не может сколько-нибудь заметно превысить среднюю энергию нейтрального газа, поскольку дополнительная энергия, приобретаемая электронами и ионами в своем направленном движении вдоль оси лугового столба, мала по сравнению с тепловой энергией газа. Следовательно, ионы, электроны, а также нейтральные атомы и молекулы находятся в тепловом равновесии. При этом удельная ионизация дугового столба полностью определяется температурой и при изменении одной из этих величин неизбежно изменяется и другая.
Поскольку при высоком давлении газа атомы и молекулы подавляющим образом преобладают над электронами и имеют почти ту же высокую температуру, большая часть возбужденных и ионизованных атомов и молекул получается при соударениях между нейтральными частицами, а не при столкновениях с электронами. Таким образом, электроны ионизуют не непосредственно при соударениях с нейтральными частицами (как это происходит в вакууме), а косвенно, повышая температуру газа в дуговом столбе. Такой механизм ионизации называют термической ионизацией. Источником энергии, необходимой для термической ионизации, является электрическое поле.
В дуговом столбе имеются потери энергии, которые в установившемся состоянии уравновешиваются энергией, получаемой из сети. Основная часть энергии уносится из дугового столба возбужденными и ионизованными атомами и молекулами. Вследствие разности концентраций заряженных частиц в дуговом столбе и окружающем пространстве, а также разности температур ионы диффундируют к поверхности дугового столба, где происходит их нейтрализация. Эти потери должны восполняться образованием новых ионов и электронов, связанным с затратой энергии. В установившемся состоянии градиент напряжения в столбе дуги всегда таков, что имеющая место ионизация компенсирует потери электронов через рекомбинацию. Градиент напряжения зависит от свойств газа, состояния, в котором он находится (спокойное, турбулентное), а также от давления и тока. При повышении давления газа градиент напряжения увеличивается вследствие уменьшения свободного пробега электронов. С увеличением тока градиент напряжения уменьшается, что объясняется увеличением площади сечения и температуры дугового столба. Дуговой столб стремится принять такое сечение, чтобы в рассматриваемых условиях потери энергии были минимальны.
Вольт-амперные характеристики дуги
Зависимость градиента напряжения Е=dU/dl в столбе дуги от тока при очень медленном изменении последнего представляет собой статическую характеристику дуги (рис.1,а), зависящую от давления и свойств газа.
Рис.1. Вольт-амперные характеристики дуги: а — статическая характеристика; б — динамические характеристики
В установившемся состоянии каждой точке характеристики соответствуют некоторое сечение и температура дугового столба. При изменении тока дуговой столб должен изменить свое сечение и температуру применительно к новым условиям. Эти процессы требуют времени, и поэтому новое установившееся состояние наступает не сразу, а с некоторым запозданием. Это явление называют гистерезисом.
Допустим, что ток внезапно изменился от значения I1 (точка 1) до значения I2 (точка 2). В первый момент дуга сохранит свои сечения и температуру, а градиент уменьшится (точка 2′). Подводимая мощность будет меньше необходимой для проведения тока I2. Поэтому сечение и температура начнут уменьшаться, а градиент увеличиваться, пока не наступит новое установившееся состояние в точке 2 на статической характеристике. При внезапном увеличении тока от значения I1 до значения I3 градиент напряжения увеличится (точка 3′). Подводимая к дуге мощность будет больше необходимой для проведения тока I3. Поэтому сечение и температура столба начнут увеличиваться, а градиент напряжения уменьшаться, пока не наступит новое установившееся состояние в точке 3 на статической характеристике.
При плавном изменении тока с некоторой скоростью градиент напряжения не успевает следовать за изменением тока в соответствии со статической характеристикой. При увеличении тока градиент напряжения превышает значения, определяемые статической характеристикой, а при уменьшении тока градиент напряжения меньше этих значений. Кривые E=f(I) при изменении тока с некоторой скоростью представляют собой динамические характеристики дуги (сплошные линии на рис.1,б).
Положение этих характеристик по отношению к статической характеристике (см. пунктирную кривую) зависит от скорости изменения тока. Чем медленнее происходит изменение тока, тем ближе расположена динамическая характеристика к статической. В заданных условиях дугового разряда может быть только одна статическая характеристика. Число динамических характеристик не ограничено.
При анализе электрических цепей принято оперировать понятием сопротивления. Поэтому говорят и о сопротивлении дуги, понимая под этим отношение напряжения у электродов к току. Сопротивление дуги непостоянно. Оно зависит от тока и многих других факторов. По мере увеличения тока сопротивление дуги уменьшается.
Рис.2. Напряжение на дуге при переменном токе: а — напряжение дуги как функция тока; 6 — напряжение дуги как функция времени
Вольт-амперная характеристика дуги переменного тока показана на рис.2,а. В течение четверти периода, когда ток увеличивается, кривая напряжения лежит выше статической характеристики. Следующую четверть периода, когда ток уменьшается, кривая напряжения лежит ниже статической характеристики.
Дуга зажигается в точках 1 и 3 и угасает в точках 2 и 4. На рис.2,б показана характеристика дуги как функции времени. Интервалы 2-3 и 4-1 соответствуют неустойчивому состоянию, при котором происходит интенсивное взаимодействие дуги с постоянными цепи R, L и С. Эти короткие интервалы времени, продолжительность которых составляет несколько микросекунд, используются для интенсивной деионизации промежутка между контактами выключателя, чтобы воспрепятствовать новому зажиганию дуги. В зависимости от условий процесс взаимодействия может закончиться двояко: или дуга погаснет и цепь будет прервана, или дуга возникнет вновь и процесс взаимодействия повторится через половину периода при более благоприятных условиях.
§92. Электрическая дуга и методы ее гашения
Физические основы горения дуги. При размыкании контактов электрического аппарата вследствие ионизации пространства между ними возникает электрическая дуга. Промежуток между контактами при этом остается проводящим и прохождение тока по цепи не прекращается.
Для ионизации и образования дуги необходимо, чтобы напряжение между контактами было примерно 15—30 В и ток цепи 80—100 мА.
При ионизации пространства между контактами заполняющие его атомы газа (воздуха) распадаются на заряженные частицы — электроны и положительные ионы. Поток электронов, излучаемых с поверхности контакта, находящегося под отрицательным потенциалом (катода), движется по направлению к положительно заряженному контакту (аноду); поток же положительных ионов движется к катоду (рис. 303,а).
Главными носителями тока в дуге являются электроны, так как положительные ионы, имея большую массу, движутся значительно медленнее электронов и переносят поэтому в единицу времени гораздо меньше электрических зарядов. Однако положительные ионы играют большую роль в процессе горения дуги. Подходя к катоду, они создают вблизи него сильное электрическое поле, которое воздействует на электроны, имеющиеся в металлическом катоде, и вырывают их с его поверхности. Это явление называется автоэлектронной эмиссией (рис. 303,б). Кроме того, положительные ионы непрерывно бомбардируют катод и отдают ему свою энергию, которая переходит в тепло; при этом температура катода достигает 3000—5000 °С.
При увеличении температуры движение электронов в металле катода ускоряется, они приобретают большую энергию и начинают покидать катод, вылетая в окружающую среду. Это явление носит название термоэлектронной эмиссии. Таким образом, под действием авто- и термоэлектронной эмиссии в электрическую дугу поступают с катода все новые и новые электроны.
При своем перемещении от катода к аноду электроны, сталкиваясь на своем пути с нейтральными атомами газа, расщепляют их на электроны и положительные ионы (рис. 303, в). Этот процесс называется ударной ионизацией. Появившиеся в результате ударной ионизации новые, так называемые вторичные электроны начинают двигаться к аноду и при своем движении расщепляют все новые атомы газа. Рассмотренный процесс ионизации газа носит лавинообразный характер подобно тому, как один камень, брошенный с горы, захватывает на своем пути все новые и новые камни, порождая лавину. В результате промежуток между двумя контактами заполняется большим количеством электронов и положительных ионов. Эта смесь электронов и положительных ионов называется плазмой. В образовании плазмы значительную роль играет термическая ионизация, которая происходит в результате повышения температуры, вызывающей увеличение скорости движения заряженных частиц газа.
Электроны, ионы и нейтральные атомы, образующие плазму, непрерывно сталкиваются друг с другом и обмениваются энергией; при этом некоторые атомы под ударами электронов приходят в возбужденное состояние и испускают избыток энергии в виде светового излучения. Однако электрическое поле, действующее между контактами, заставляет основную массу положительных ионов двигаться к катоду, а основную массу электронов — к аноду.
В электрической дуге постоянного тока в установившемся режиме определяющей является термическая ионизация. В дуге переменного тока при переходе тока через нуль существенную роль играет ударная ионизация, а в течение остального времени горения дуги — термическая ионизация.
При горении дуги одновременно с ионизацией промежутка между контактами происходит обратный процесс. Положительные ионы и электроны, взаимодействуя друг с другом в межконтактном пространстве или при попадании на стенки камеры, в которой горит дуга, образуют нейтральные атомы. Этот процесс называется рекомбинацией; при прекращении ионизации рекомбинация приводит к исчезновению электроноз и ионов из межэлектродного пространства — происходит его деионизация. Если рекомбинация осуществляется на стенке камеры, то она сопровождается выделением энергии в виде тепла; при рекомбинации в межэлектродном пространстве энергия выделяется в виде излучения.
Рис. 303. Направление движения электронов и положительных ионов в электрической дуге (о), возникновение автоэлектронной эмиссии из катода (б) и ударной ионизации атомов газа в пространстве между контактами (в): 1,2 — первичные и вторичный электроны; 3— атом газа; 4 — положительный ион
При соприкосновении со стенками камеры, в которой находятся контакты, дуга охлаждается, что. приводит к усилению деиони-зации. Деионизация происходит также в результате движения заряженных частиц из центральных областей дуги с более высокой концентрацией в периферийные области с низкой концентрацией. Этот процесс называется диффузией электронов и положительных ионов.
Зону горения дуги условно делят на три участка: катодную зону, ствол дуги и анодную зону. В катодной зоне происходит интенсивная эмиссия электронов из отрицательного контакта, падение напряжения в этой зоне составляет около 10 В.
В стволе дуги образуется плазма с приблизительно одинаковой концентрацией электронов и положительных ионов. Поэтому в каждый момент времени суммарный заряд положительных ионов плазмы компенсирует суммарный отрицательный заряд ее электронов. Большая концентрация заряженных частиц в плазме и отсутствие в ней электрического заряда обусловливают высокую электропроводность ствола дуги, которая близка к электропроводности металлов. Падение напряжения в стволе дуги приблизительно пропорционально ее длине. Анодная зона заполнена, главным образом, электронами, подходящими из ствола дуги к положительному контакту. Падение напряжения в этой зоне зависит от тока в дуге и размеров положительного контакта. Суммарное падение напряжения в дуге составляет 15—30 В.
Зависимость падения напряжения Uдг, действующего между контактами, от тока I, проходящего через электрическую дугу, называется вольт-амперной характеристикой дуги (рис. 304,а). Напряжение Uз, при котором возможно зажигание дуги при токе I = 0, называется напряжением зажигания. Значение напряжения зажигания определяется материалом контактов, расстоянием между ними, температурой и окружающей средой. После возникновения
Рис. 304. Вольт-амперные характеристики дуги постоянного тока (а) и кривые изменения напряжения и тока (б) при горении дуги переменного тока
электрической дуги ее ток увеличивается до значения, близкого к току нагрузки, который протекал через контакты до отключения. При этом сопротивление межконтактного промежутка падает быстрее, чем увеличивается ток, что приводит к уменьшению падения напряжения Uдг. Режим горения дуги, соответствующий кривой а, называется статическим.
При снижении тока до нуля процесс соответствует кривой b и дуга прекращается при меньшем падении напряжения, чем напряжение зажигания. Напряжение Uг, при котором дуга гаснет, называют напряжением гашения. Оно всегда меньше напряжения зажигания вследствие повышения температуры контактов и увеличения проводимости межконтактного промежутка. Чем больше скорость снижения тока, тем меньше напряжение гашения дуги в момент прекращения тока. Вольт-амперные характеристики b и с соответствуют снижению тока с различной скоростью (для кривой с больше, чем для кривой b), а прямая d соответствует практически мгновенному снижению тока. Такой характер вольт-амперных характеристик объясняется тем, что при быстром изменении тока ионизационное состояние межконтактного промежутка не успевает следовать за изменением тока. Для деионизации промежутка требуется определенное время, и поэтому, несмотря на то, что ток в дуге упал, проводимость промежутка осталась прежней, соответствующей большому току.
Вольт-амперные характеристики b — d, полученные при быстром изменении тока до нуля, называются динамическими. Для каждого межконтактного промежутка, материала электродов и среды имеются одна статическая характеристика дуги и множество динамических, заключенных между кривыми а и d.
При горении дуги переменного тока в течение каждого полупериода имеют место такие же физические процессы, что и в дуге постоянного тока. В начале полупериода напряжение на дуге возрастает по синусоидальному закону до значения напряжения зажигания Uз — участок 0—а (рис. 304,б), а затем после возникновения дуги падает по мере возрастания тока — участок а — b. Во вторую часть полупериода, когда ток начинает снижаться, напряжение на дуге вновь возрастает до значения напряжения гашения Uг при спаде тока до нуля — участок b — с.
В течение следующего полупериода напряжение меняет знак и по синусоидальному закону возрастает до значения напряжения зажигания, соответствующего точке а’ вольт-амперной характеристики. По мере роста тока напряжение снижается, а затем вновь повышается при снижении тока. Кривая напряжения дуги, как видно из рис. 304, б, имеет форму срезанной синусоиды. Процесс деионизации заряженных частиц в промежутке между контактами продолжается лишь незначительную долю периода (участки 0 — а и с —а’) и, как правило, за это время не заканчивается, в результате чего дуга возникает снова. Окончательное гашение дуги будет иметь место только после ряда повторных зажиганий во время одного из последующих переходов тока через нуль.
Возобновление дуги после перехода тока через нуль объясняется тем, что после спада тока к нулевому значению ионизация, существующая в стволе дуги, исчезнет не сразу, так как она зависит от температуры плазмы в остаточном стволе дуги. По мере уменьшения температуры возрастает электрическая прочность межконтактного промежутка. Однако если в какой-то момент времени мгновенное значение приложенного напряжения будет больше пробивного напряжения промежутка, то произойдет его пробой, возникнет дуга и потечет ток другой полярности.
Условия гашения дуги. Условия гашения дуги постоянного тока зависят не только от ее вольт-амперной характеристики, но и от параметров электрической цепи (напряжение, ток, сопротивление и индуктивность), которую включают и отключают контакты аппарата. На рис. 305, а показана вольт-амперная характеристика дуги
Рис. 305. Вольт-амперные характеристики дуги при устойчивом горении (а) и гашении (б)
(кривая 1) и зависимость падения напряжения на резисторе R, включенном в данную цепь (прямая 2). В установившемся режиме напряжение Uи источника тока равно сумме падений напряжения в дуге Uдг и IR на резисторе R. При изменении тока в цепи к ним добавляется э. д. с. самоиндукции ±eL (изображена заштрихованными ординатами). Длительное горение дуги возможно только в режимах, соответствующих точкам А и В, когда напряжение Uи — IR, приложенное к промежутку между контактами, равно падению напряжения Uдг. При этом в режиме, соответствующем точке А, горение дуги неустойчиво. Если при горении дуги в этой точке характеристики ток по каким-то причинам увеличился, то напряжение Uдг станет меньше приложенного напряжения Uи — IR. Избыток приложенного напряжения вызовет увеличение тока, который будет расти до тех пор, пока не достигнет значения Iв.
Если в режиме, соответствующем точке А, ток уменьшится, приложенное напряжение Uи — IR станет меньше Uдг и ток будет продолжать уменьшаться, пока дуга не погаснет. В режиме, соответствующем точке В, дуга горит устойчиво. При увеличении тока свыше Iв падение напряжения в дуге Uдг станет больше приложенного напряжения Uи — IR и ток начнет уменьшаться. Когда ток в цепи станет меньше Iв, приложенное напряжение Uи — IR станет больше Uдг и ток начнет увеличиваться.
Очевидно, чтобы обеспечить гашение дуги во всем заданном диапазоне изменения тока I от наибольшего значения до нуля при отключении цепи, нужно, чтобы вольт-амперная характеристика 1 располагалась выше прямой 2 для отключаемой цепи (рис. 305,б). При этом условии падение напряжения в дуге Uдг будет всегда больше приложенного к ней напряжения Uи — IR и ток в цепи будет уменьшаться.
Основным средством повышения падения напряжения в дуге является увеличение длины дуги. При размыкании цепей низкого напряжения со сравнительно небольшими токами гашение обеспечивается соответствующим выбором раствора контактов, между которыми возникает дуга. В этом случае дуга гаснет без каких-либо дополнительных устройств.
Для контактов, разрывающих силовые цепи, необходимая для гашения длина дуги настолько велика, что практически осуществить такой раствор контактов уже не представляется возможным. В таких электрических аппаратах устанавливают специальные дугогасительные устройства.
Дугогасительные устройства. Способы гашения дуги могут быть различные, но все они основываются на следующих принципах: принудительное удлинение дуги; охлаждение межконтактного промежутка посредством воздуха, паров или газов; разделение дуги на ряд отдельных коротких дуг.
При удлинении дуги и удалении ее от контактов происходит увеличение падения напряжения в столбе дуги и напряжение, приложенное к контактам, становится недостаточным для поддержания дуги.
Рис. 306. Дугогасительное устройство с защитными рогами (а) и гашение дуги (б)
Охлаждение межконтактного промежутка вызывает повышенную теплоотдачу столба дуги в окружающее пространство, вследствие чего заряженные частицы, перемещаясь из внутренней части дуги на ее поверхность, ускоряют процесс деионизации.
Разделение дуги на ряд отдельных коротких дуг приводит к повышению суммарного падения напряжения в них и приложенное к контактам напряжение становится недостаточным для устойчивого поддерживания дуги, поэтому происходит ее гашение.
Принцип гашения путем удлинения дуги используется в аппаратах с защитными рогами и в рубильниках. Электрическая дуга, возникающая между контактами 1 и 2 (рис. 306, а) при их размыкании, поднимается вверх под действием силы FB, создаваемой потоком нагретого ею воздуха, растягивается и удлиняется на расходящихся неподвижных, рогах, что приводит к ее гашению. Удлинению и гашению дуги способствует также электродинамическое усилие создаваемое в результате взаимодействия тока дуги с возникающим вокруг нее магнитным полем. При этом дуга ведет себя как проводник с током, находящийся в магнитном поле (рис. 307, а), которое, как было показано в главе III, стремится вытолкнуть его из пределов поля.
Для увеличения электродинамического усилия Fэ, действующего на дугу, в цепь одного из контактов 1 в ряде случаев включают специальную дугогасительную катушку 2 (рис. 307,б), создающую в зоне дугообразования сильное магнитное поле, маг-
Рис. 307. Принцип магнитного дутья (а) и дугогасительное устройство с дугогасительной катушкой (б)
Рис. 308. Дугогасительные камеры
нитный поток которого Ф, взаимодействуя с током I дуги, обеспечивает интенсивное выдувание и гашение дуги. Быстрое перемещение дуги по рогам 3, 4 вызывает ее интенсивное охлаждение, что также способствует ее деионизации в камере 5 и гашению.
В некоторых аппаратах применяют методы принудительного охлаждения и растягивания дуги сжатым воздухом или другим газом.
При размыкании контактов 1 и 2 (см. рис. 306, б) возникшая дуга охлаждается и выдувается из зоны контактов струей сжатого воздуха или газа с силой FB.
Эффективным средством охлаждения электрической дуги с последующим ее гашением являются дугогасительные камеры различной конструкции (рис. 308). Электрическая дуга под действием магнитного поля, потока воздуха или иными средствами загоняется в узкие щели или лабиринт камеры (рис. 308, а и б), где она тесно соприкасается с ее стенками 1, перегородками 2, отдает им тепло и гаснет. Широкое применение в электрических аппаратах э. п. с. находят лабиринтно-щелевые камеры, где дуга удлиняется не только путем растягивания между контактами, но и путем ее зигзагообразного искривления между перегородками камеры (рис. 308, в). Узкая щель 3 между стенками камеры способствует охлаждению и деионизации дуги.
К дугогасительным устройствам, действие которых основано на разделении дуги на ряд коротких дуг, относят деионную решетку (рис. 309, а), встроенную внутрь дугогасительной камеры.
Деионная решетка представляет собой набор ряда отдельных стальных пластин 3, изолированных друг относительно друга. Электрическая дуга, возникшая между размыкающимися контактами 1 и 2, разделяется решеткой на ряд более коротких дуг, соединенных последовательно. Для поддержания горения дуги без ее разделения требуется напряжение U, равное сумме околоэлектродного (анодного и катодного) падения напряжения Uэ и падения напряжения в столбе дуги Uст.
При разделении одной дуги на п коротких дуг суммарное падение напряжения в столбе всех коротких дуг по-прежнему будет равно nUэ как и у одной общей дуги, но суммарное околоэлектродное падение напряжения во всех дугах будет равно nUэ. Поэтому для поддержания горения дуги в этом случае потребуется напряжение
U = nUэ + Uст.
Число дуг n равно числу пластин решетки и может быть выбрано таким, чтобы возможность устойчивого горения дуги при данном напряжении U была полностью исключена. Действие такого принципа гашения эффективно как при постоянном, так и при переменном токе. При переходе переменного тока через нулевое значение для поддержания дуги требуется напряжение 150—250 В. В связи с этим число пластин может быть выбрано значительно меньшим, чем при постоянном токе.
В плавких предохранителях с заполнителем при плавлении вставки и возникновении электрической дуги вследствие повышенного давления газов в патроне ионизированные частицы перемещаются в поперечном направлении. При этом они попадают между зернами заполнителя, остывают и деионизируются. Зерна заполнителя, передвигаясь под действием избыточного давления, разбивают дугу на большое число микродуг, чем и обеспечивается их гашение.
В предохранителях без заполнителя нередко корпус делают из материала, обильно выделяющего газ при нагревании. К таким материалам относится, например, фибра. При соприкосновении с дугой корпус нагревается и выделяет газ, способствующий гашению дуги. Аналогично гасится дуга в масляных выключателях переменного тока (рис. 309, б) с той лишь разницей, что вместо сухого заполнителя здесь используется негорючее масло. При возникновении дуги в момент размыкания подвижных 1, 3 и неподвижного 2 контактов ее гашение происходит под действием двух факторов: выделения большого количества водорода, не поддерживающего горение (в применяемом для этой цели масле содержание водорода 70—75 %), и интенсивного охлаждения дуги маслом вследствие его высокой теплоемкости. Дуга гаснет в момент, когда ток равен нулю. Масло не только способствует ускоренному гашению дуги, но и служит изоляцией токоведущих и заземленных частей конструкции. Для гашения дуги в цепи постоянного тока масло не применяют, так как под действием дуги оно быстро разлагается и теряет свои изоляционные качества.
В современных электрических аппаратах гашение дуги часто осуществляется путем сочетания двух или нескольких рассмотрен-
Рис. 309. Гашение дуги в деионной решетке (а) и в масле (б)
Рис. 310. Кривая изменения тока при отключении аварийного тока автоматическим выключателем
ных выше способов (например, с помощью дугогасительной катушки, защитных рогов и деионной решетки).
Условия гашения электрической дуги определяют отключающую способность защитных аппаратов. Она характеризуется наибольшим током, который может отключить аппарат с определенным временем гашения дуги.
При коротком замыкании электрической цепи, подключенной к источнику электрической энергии, ток в цепи возрастает по кривой 1 (рис. 310). В момент t1, когда он достигает значения, на которое отрегулирован защитный аппарат (тока уставки Iу), аппарат срабатывает и отключает защищаемую цепь, вследствие чего ток уменьшается по кривой 2.
Время, отсчитываемое от момента подачи сигнала на отключение (или включение) аппарата до момента начала размыкания (или замыкания) контактов, называют собственным временем срабатывания аппарата tс. При отключении момент начала размыкания контактов соответствует возникновению дуги между расходящимися контактами. В автоматических выключателях это время измеряется от момента достижения током значения уставки t1 до момента появления дуги между контактами t2. Временем горения дуги tдг называется время от момента появления дуги t2 до момента прекращения прохождения тока t3. Полное время отключения tп представляет собой сумму собственного времени и времени горения дуги.
Гашение дуги в воздушных выключателях
В воздушных выключателях дуга гасится в потоке воздуха высокого давления. Гасительное устройство выключателя (рис.3,а) представляет собой камеру, в которой помещены два сопла, служащие одновременно контактами. Выхлопные стороны сопел соединены с областью низкого давления. При разведении контактов вследствие разности давлений возникает поток воздуха, направленный в сопла симметрично в обе стороны.
Рис.3. Дугогасительное устройство воздушного выключателя с двухсторонним дутьем: а — схема; б — распределение давления вдоль оси
На рис.3,б показано распределение давления вдоль оси. В середине промежутка между соплами имеется точка торможения потока, давление в которой обозначено через рo.
В обе стороны от этой точки давление уменьшается и достигает в горловинах сопел приблизительно половины рo. За горловинами давление продолжает падать до давления выхлопа.
Процесс гашения дуги протекает следующим образом. Между размыкающимися контактами возникает дуга, которая под действием воздушного потока быстро переносится вдоль оси. При этом опорные пятна дуги перемещаются внутрь сопел по потоку, как показано на рис.3. Дуга в промежутке между соплами имеет цилиндрическую форму.
Рис.4. Распределение температуры в поперечном направлении на участке между соплами: а — дуга; в — тепловой пограничный слой
Распределение температуры в поперечном направлении показано на рис.4. В зоне дуги а она составляет приблизительно 20000 К и резко спадает к тепловому пограничному слою в, образующемуся около дуги. Здесь температура изменяется в пределах от 2000 К до температуры холодного воздуха. По мере подхода тока к нулю диаметр цилиндрической части дуги быстро уменьшается. При токе, равном нулю, он меньше 1 мм. Однако температура в этой части дуги еще очень высока (15000 К).
Важнейшим фактором, способствующим гашению дуги, является турбулентность в пограничном слое между дугой и окружающим ее относительно холодным воздухом. Вследствие высокой температуры дуги плотность газа в столбе приблизительно в 20 раз меньше, чем в окружающей среде. Поэтому скорость газа внутри дугового столба значительно выше скорости в соседних слоях (скорость обратно пропорциональна корню квадратному из плотности). Вследствие диффузии частиц из области с большой скоростью в область с малой скоростью и обратно в пограничном слое возникают значительные срезывающие силы, образуются вихри и весь объем приобретает высокую турбулентность. В дуговой столб вносится относительно холодный неионизованный газ, вследствие чего столб теряет свою однородность. Он расщепляется на тысячи тончайших проводящих нитей, непрерывно изменяющих свою форму и положение (рис.5).
Рис.5. Влияние турбулентности на столб дуги вблизи нуля тока (схема)
Они имеют высокую температуру и высокую удельную ионизацию и окружены холодным слабо ионизованным газом. Известно, что скорость диффузии из цилиндрического объема обратно пропорциональна квадрату диаметра. Чем тоньше ионизованные нити, тем быстрее происходит обмен частиц с окружающей более холодной и менее ионизованной средой. Турбулентность увеличивает диффузию во много раз. Она проявляется особенно резко в горловинах сопел, где скорость плазмы максимальна — 6000 м/с. После нуля тока в течение короткого промежутка времени, исчисляемого микросекундами, происходит распад проводящего канала и дальнейшее уменьшение температуры определяется тепловым пограничным слоем, остывание которого происходит значительно медленнее.
Рис.6. Схема замещения, поясняющая влияние сопротивления дуги и емкости
Рис.7. Взаимодействие дуги с электрической цепью
Существенное влияние на процесс отключения оказывает сопротивление дуги и емкость, включенная параллельно дуговому промежутку (рис.6). Если пренебречь сопротивлением дуги, ток i0=Imsinɷt подходит к нулю практически линейно (рис.7). Однако сопротивление дуги не равно нулю. Поэтому ток iB в дуговом промежутке выключателя уменьшается:
(1)
где t0 — момент размыкания контактов.
Как видно из рисунка, напряжение на дуге изменяется в соответствии с вольт-амперной характеристикой. Скорость снижения тока существенно уменьшается в течение последних 5…10 мкс до прихода его к нулю. Это время мало, но оно в несколько раз больше постоянной времени дуги и поэтому существенно влияет на состояние дуги при нуле тока (точка 1). Дуга легко угасает. Сопротивление дуги видоизменяет и кривую ПВН. Процесс восстановления напряжения начинается в точке 1; напряжение достигает максимума в точке 2, когда iL=iC=0.
Этап возможного теплового пробоя
Если температура газа в промежутке не снизится до некоторого критического значения, определяемого свойством газа и давлением, промежуток сохранит свою проводимость после нуля тока (точка 1) и под действием ПВН возникнет ток остаточной проводимости (рис.8).
Рис.8. Погасание дуги с задержкой, вызванной появлением тока остаточной проводимости
При благоприятных условиях он невелик и быстро затухает (точка 2). Однако если процесс охлаждения недостаточно интенсивен, ток остаточной проводимости увеличивается; происходит повторный разогрев плазмы, возобновляется процесс ионизации и дуга возникает вновь. Это явление получило название теплового пробоя, так как электрический пробой невозможен, поскольку промежуток ионизован и не приобрел еще электрической прочности.
Произойдет такой пробой или нет, зависит от исхода двух взаимосвязанных процессов, протекающих в промежутке, из которых один определяется интегралом во времени подводимой мощности (произведения тока и напряжения на промежутке), а второй — интегралом во времени потерь, вызванных теплопроводностью и конвекцией. Это означает, что процесс взаимодействия продолжится до тех пор, пока ток не исчезнет или дуга не возникнет вновь. Явление теплового пробоя характерно для первых 20 мкс после нуля тока в условиях, когда скорость восстанавливающеюся напряжения велика, например при неудаленных КЗ.
Этап возможного электрического пробоя
Если тепловой пробой не произошел, межконтактный промежуток продолжает подвергаться воздействию ПВН. Дуговой канал имеет еще повышенную температуру и пониженную плотность. Спустя несколько сотен микросекунд после нуля тока, когда ПВН достигает максимального значения, наступает этап возможного электрического пробоя. В основе его лежит не баланс энергий, а процесс образования электронов в электрическом поле. Если увеличение концентрации электронов превысит некоторое критическое значение, то произойдет образование искры, которая перейдет в дуговой разряд.
Что такое электрическая дуга?
Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.
Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.
Рис. 2. Электрическая дуга
Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».
Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.
Рис. 3. Физика электрической дуги
Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.
Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.
При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.
При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.
На участке, который называют дуговым промежутком, образуется ствол, называемый столбом дуги и состоящий из горячей проводимой плазмы. По этому стволу протекает ток, поддерживающий разогревание плазмы. Так происходит процесс зажигания дугового разряда.
Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.
Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.
Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга — это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.
Электрическая дуга отличается от обычного разряда большей длительностью горения.
Гашение дуги в масляных выключателях
В масляных выключателях контакты размыкаются в масле, однако вследствие высокой температуры дуги, образующейся между контактами, масло разлагается и дуговой разряд происходит в газовой среде. Приблизительно половину этого газа (по объему) составляют пары масла. Остальная часть состоит из водорода (70%) и углеводородов различного состава. Газы эти горючи, однако в масле горение невозможно из-за отсутствия кислорода. Количество масла, разлагаемого дугой, невелико, но объем образующихся газов велик. Один грамм масла дает приблизительно 1500 см3 газа, приведенного к комнатной температуре и атмосферному давлению.
Гашение дуги в масляных выключателях происходит наиболее эффективно при применении гасительных камер, которые ограничивают зону дуги, способствуют повышению давления в этой зоне и образованию газового дутья сквозь дуговой столб. На рис.9 приведена схема простейшей гасительной камеры.
Рис.9. Схема простейшей гасительной камеры масляного выключателя
В процессе отключения контактный стержень 1 перемещается вниз. Между контактами 1 и 2 возникает дуга. Происходит интенсивное газообразование и давление в камере быстро увеличивается. Относительно холодный газ, образующийся на поверхности масла, перемешивается с плазмой дуги. Пограничный слой приходит в турбулентное состояние, способствующее деионизации. Однако дуга не может погаснуть до тех пор, пока расстояние между контактами не достигнет некоторого минимального значения, определяемого восстанавливающимся напряжением. Этот минимальный промежуток образуется, когда подвижный контакт еще находится в камере. Когда стержень покидает пределы камеры, газы с силой выбрасываются наружу. Возникает газовое дутье, направленное по оси, способствующее гашению дуги.
После погасания дуги контактный стержень продолжает свое движение, чтобы обеспечить необходимое изоляционное расстояние в отключенном положении.
Напряжение на дуге масляного выключателя по крайней мере в 3 раза больше, чем у воздушного выключателя. Электрическая прочность промежутка восстанавливается быстрее (со скоростью около 2 кВ/мкс). Поэтому при одинаковом токе КЗ дугогасительное устройство масляного выключателя может быть рассчитано на вдвое большее напряжение и вдвое большее волновое сопротивление, чем устройство воздушного дутья.