Конденсаторы для запуска электродвигателя: какие нужны, как подключить

  • 22 Января, 2021
  • Инструменты и оборудование
  • Юлия Толок

В быту часто возникает такая ситуация, когда необходимо подключить электродвигатель, но нет нужного источника питания. Тогда требуется использование другого типа напряжения. Обычно это происходит, если двигатель нужно подсоединить к стороннему оборудованию (токарному станку, самодельному устройству). Для этой цели применяют конденсаторы. Они бывают нескольких видов, поэтому необходимо иметь хотя бы базовое понятие о том, какие конденсаторы для запуска электродвигателя использовать в каждом конкретном случае.

Что собой представляет конденсатор

Конденсатор — это радиоэлемент, состоящий из двух пластин, между которыми расположен диэлектрик. Его основная цель — создать буфер между пластинами для накопления заряда. Конденсаторы бывают трех видов:

  1. Полярные. Используются в системах постоянного тока. Это электролитические конденсаторы, которые вследствие своего особого строения имеют полярность. Для подключения к источникам переменного тока не очень подходят из-за разрушения слоя диэлектрика с выделением большого количества тепла, что иногда даже приводит к взрывам.
  2. Неполярные. Предназначены для использования в обоих типах цепей.
  3. Электролитические. К этой категории относятся только неполярные конденсаторы такого типа. У них в роли обкладки выступает оксидная пленка. Оптимальный вариант для низкочастотных двигателей благодаря высокой возможной емкости.

Каждый тип двигателей имеет свои особенности подбора конденсатора. Это определяет и какой емкости нужен конденсатор для запуска двигателя, какого номинального напряжения и какого типа.

Описание конденсатора постоянного тока

Электрические цепи бывают двух видов — постоянными или переменными. Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.

Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:

  1. Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
  2. Установить лампочку, рассчитанную на такое же напряжение.
  3. В сеть установить конденсатор.

Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.
Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.

Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.

Подключение однофазного двигателя

Для подключения асинхронного двигателя в однофазную цепь обычно используется напряжение 220 В. Но для запуска необходимо создать вращательный момент смещения ротора. С этой целью применяется пусковая обмотка, которая является дополнительной и функционирует только при запуске. На ней при помощи конденсатора задается смещение фазы.

Емкость выбирается по следующему принципу. Общая емкость (рабочая и пусковая) на 100 Вт мощности составляет приблизительно 1 мкФ. Если необходимо подобрать конденсаторы для запуска электродвигателя мощностью 1,5 кВт, то ее достаточно легко рассчитать: 1,5 х 1000 : 100 х 1 = 15 мкФ. Таким образом, чтобы подключить однофазный асинхронный двигатель мощностью 1,5 кВт, необходимо использовать рабочий и пусковой конденсатор общей емкостью 15 мкФ.

Подобные двигатели имеют несколько режимов работы:

  • Подключаемая дополнительная обмотка к пусковому конденсатору. Емкость подбирается из соображений 70 мкФ на киловатт мощности.
  • Дополнительная обмотка, задействована на всем периоде работы совместно с рабочим конденсатором, емкость около 30 мкФ.
  • Подключение двух типов конденсаторов одновременно.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Методы расчета емкости

Для расчета того, какие конденсаторы для запуска электродвигателя лучше использовать, применяется следующая формула:

  • С = k х If : Uc,

где:

  • k – коэффициент, он отличается в зависимости от типа подключения, 4800 — треугольник и 2800 — звезда;
  • If – ток стартера (указывается на двигателе);
  • Uc – напряжение сети, в данном случае 220 вольт.

На выходе получается емкость, измеряемая в мкФ (одна миллионная часть Фарада). Рассчитать ее можно и другим способом, используя в качестве основного параметра мощность.

Каждые 100 Вт мощности двигателя соответствуют 7 мкФ. Следует не забывать о том, что на обмотку стартера должен поступать ток не выше, чем номинальный.

О развязке питания с примерами

Когда я участвовал в проведении конкурса 7400, я понял, что многим из представленных логических схем для надежной работы не хватает простейших защитных элементов. Одним из самых часто встречающихся недостатков конструкции было отсутствие блокировочных емкостей. Позже, прочитав статью о законе Мёрфи, я решил немного написать о развязке и блокировочных конденсаторах. Как человек, которого можно назвать старожилом в области электроники, я познакомился с проблемой отсутствия развязки на собственном опыте. Свою первую высокоскоростную схему я собрал, будучи стажером в крупной фирме по производству электроники. Та схема, цифровой частотомер, была собрана на логике семейства 74Fxx и работала на частоте 11 МГц (по тем временам это считалось очень много). Это была плата размером 23 × 16 см (Double Eurocard), содержащая около 40 микросхем, соединенных монтажом накруткой (wire wrap). Когда пришло время ее включать, я увидел, что схема не работает, как надо, а выдает полную ерунду. Проверив несколько раз сборку, я рассказал о проблеме своему руководителю, а он взглянул на плату и сказал: «Не хватает блокировочных конденсаторов. Поставь их на питание около каждой микросхемы, тогда и поговорим.» Совершенно растерянный, я сделал, как было сказано, и — о чудо! — все сразу заработало. Почему, казалось бы, ни на что не влияющая емкость заставила схему работать? Мой руководитель рассказал мне о бросках тока при переключении, об индуктивности проводников и о развязке. Я признаю, что прошло несколько лет, прежде чем я действительно понял, что он тогда говорил, но урок был усвоен: всегда ставить конденсаторы на питание цифровых микросхем.

Термины «блокировочный конденсатор» и «развязка» — не случайные слова, а имеют в данном контексте вполне определенное значение: развязка — действие, направленное на (частичное) отделение цепей питания микросхемы от общего источника питания; блокировочный конденсатор — конденсатор, установленный таким образом, что он шунтирует питание микросхемы и действует как местный источник питания.

Почему это всё так важно? Взгляните, например, сюда:

Разве это похоже на цифровой сигнал? Такую ерунду вы получите без блокировочных конденсаторов.

Пожалуйста, обратите внимание, что тактовая частота не важна

. Проблема заключается в восходящих и спадающих фронтах сигнала. Так, одни и те же соображения применимы для систем, работающих на частоте 1 Гц, 20 кГц или 50 МГц. Используемые частоты в примерах ниже выбраны такими, чтобы их было удобно наблюдать на осциллографе.

Следует отметить, что на высокой частоте сбой наступает быстрее, чем на низкой, за счет большего числа фронтов в единицу времени. Однако это не означает, что низкочастотные схемы будут работать надежно. Это далеко не так, они будут сбоить так же легко, согласно закону Мёрфи. Да, и кстати, вы подумали о ваших маленьких микроконтроллерах, работающих на частоте 16 МГц?

Чтобы увидеть, что происходит, нужно измерить токи, протекающие через схему. Вот простая экспериментальная установка, собранная для иллюстрации:

Напряжение в точке TP2 пропорционально потребляемому микросхемой току и отображается на нижней осциллограмме. Блокировочный конденсатор может быть подключен или отключен при необходимости. Щупы осциллографа снабжены делителями 1:10, так что масштаб осциллограммы по вертикали нужно умножить на 10. Все неиспользуемые входы 74HC04 заземлены. Установка выглядит так:

Рисунок 5 показывает проблемы, возникающие на высоких и низких частотах. Картинки слева — без блокировочного конденсатора, справа — с ним.

Некоторые наблюдения из рисунка 5:

  • Измеренный ток — это только ток через ногу GND и блокировочный конденсатор. Он не в точности соответствует току, потребляемому микросхемой. Сложно измерять ток через ноги Vcc и GND одновременно (ограничения, накладываемые конструкцией осциллографа. — Прим. перев.
    )
    . Однако, измерение тока через вывод GND достаточно для иллюстративных целей.
  • При логической «1» на выходе наблюдается высокочастотный «звон». Его размах больше 2 В, и выбросы превосходят напряжение питания. Добавление блокировочного конденсатора снижает «звон» до практически несущественного уровня. Выброс все еще остается, но затухает гораздо быстрее
  • Фронтам сигнала соответствуют выбросы («иголки») потребляемого тока. Добавление блокировочного конденсатора уменьшает эти выбросы и делает их симметричными при восходящем и спадающем фронтах. Диапазон выбросов от -22 до +45 мА без блокировочного конденсатора и от -32 до +36 мА — с ним.
  • Симметричная форма тока при наличии блокировочного конденсатора говорит, что энергия запасается и извлекается обратно. Это очень важная особенность.
  • Остаточный ВЧ звон во многом зависит от положения щупа осциллографа (не показано), что говорит о том, что схема содержит паразитные LC-элементы и радиочастотные антенны. Расположение на плате и взаимное положение соединительных проводов оказывает значительное влияние на амплитуду и частоту колебаний. Эти помехи не могут быть полностью устранены, но их можно сильно уменьшить, правильно разведя печатную плату.

Взглянем на фронты сигнала поближе:

Микросхема 74HC04 выполнена по технологии КМОП. Это означает, что статический потребляемый ток близок к нулю. Ток потребляется только при переключениях из «0» в «1» и из «1» в «0». При переключении все нагрузочные и паразитные емкости должны быть перезаряжены. Для экспериментальной схемы нагрузка имеет емкость 10 пФ. Сюда нужно добавить емкости выводов и паразитные емкости, которые составляют примерно 5+2 пФ. Щуп осциллографа имеет емкость 10 пФ, которую тоже нужно учесть. Таким образом, суммарная емкость нагрузки на выходе инвертора примерно 27 пФ.

Выходную емкость нужно зарядить от 0 до 5 В примерно за 4,3 нс. Приняв для простоты, что зарядный ток постоянный, оценим его величину: Q = I · t = C · U
I
= (5 · 27 · 10-12)/(4,3 · 10-9) = 31,4 мА

Это означает, что через выход инвертора при каждом переключении втекает или вытекает огромный (по меркам КМОП. — Прим. перев.

)
ток. Откуда черпается энергия на это? Конечно, из источника питания. На рисунке 6 хорошо видно, что ток не возникает мгновенно, а нарастает до определенного уровня, а затем падает снова. Такое поведение явно указывает на наличие индуктивных элементов.
Лучше всего это видно на рисунке 6 справа, где ток достигает максимума в тот момент, когда выходное напряжение падает до нуля. Затем ток падает, вызывая провал выходного напряжения. Расчетный ток достаточно хорошо совпадает с измеренным, учитывая, что была проведена лишь простейшая оценка.

Еще раз внимательно взглянем на нижнюю половину рисунка 6. Слева выходное напряжение не доходит до 5 В в течение некоторого времени, а справа — достигает почти сразу. Без блокировочного конденсатора микросхеме не хватает мощности питания для формирования крутого фронта, и напряжение застревает на уровне 4 вольт. Блокировочный конденсатор выдает необходимую мгновенную мощность на некоторое время.

Блокировочный конденсатор примерно в 4000 раз больше, чем емкость нагрузки, значит, следует ожидать, что падение напряжения питания будет в 4000 раз ниже (чем размах выходного напряжения. — Прим. перев.

)
— порядка 1-2 мВ.
При обратном переключении, из «1» в «0», как на рисунке 6 сверху, блокировочный конденсатор выступает в роли резервуара для принятия выделившейся энергии. Емкость нагрузки разряжается, и ток должен стечь на землю. Тем не менее, энергия не может быть мгновенно передана в источник питания, и блокировочный конденсатор будет временно хранить ее.

Основной источник питания не может обеспечить микросхему достаточной мощностью из-за индуктивности проводников. Каждый провод обладает паразитной индуктивностью, которая препятствует изменению тока. Из определения индуктивности:
U = L · dI / dt ⇒ dI = U · dt / L
Из этого уравнения видно, что изменение тока обратно пропорционально индуктивности. Иными словами, если возрастает индуктивность, становится труднее изменить ток за заданный промежуток времени, при прочих равных параметрах. Кроме того, изменение тока вызывает падение напряжения на индуктивности. Чем длиннее провод (или дорожка на плате) тем более высокую индуктивность он имеет, тем сильнее он сопротивляется быстрому изменению тока, и тем больше будет падение напряжения.

Блокировочный конденсатор является локальным накопителем энергии. Он всегда должен быть установлен как можно ближе к выводам питания микросхемы, чтобы свести к минимуму индуктивность проводников от конденсатора до микросхемы. Такая схема развязывает общие и локальные цепи питания.

Микросхема состоит из шести инверторов, поэтому схему можно изменить так, чтобы увеличить потребляемый ток:

Обратите внимание на другой масштаб по оси Y для канала измерения тока, по сравнению с рисунками 5 и 6.

Ток через вывод GND теперь имеет выбросы около 70 мА при отсутствии блокировочного конденсатора. Если же последний установлен, снова наблюдаем симметричную форму выбросов амплитудой ±50 мА при восходящих и спадающих фронтах.

Обратите внимание, что фронт сигнала, как видно на рисунке 8 внизу слева, теперь гораздо более пологий. Микросхеме просто-напросто не хватает энергии для быстрого переключения. Установка блокировочного конденсатора (рисунок 8 справа) восстанавливает крутизну фронта до приемлемого уровня.

Подробное рассмотрение фронтов сигнала выявляет увеличенный по продолжительности выброс тока, что вызвано большими потребностями в энергии. Нагрузка микросхемы примерно в шесть раз выше, чем раньше (первый инвертор нагружен на входные емкости остальных инверторов, которые составляют 5 раз по 5 пФ).

Это был лишь простой пример — микросхема из шести инверторов. А теперь экстраполируйте вышесказанное на сложную логическую схему, содержащую множество элементов и множество внутренних соединений. В ней очень много паразитных емкостей, которые должны перезаряжаться при каждом изменении входных сигналов. Наконец, представьте себе микроконтроллер, состоящий из многих тысяч вентилей.

Изложенные выше объяснения и иллюстрации должны дать ясное понимание того, что блокировочный конденсатор — важный элемент, выполняющий свою специальную функцию. Он запасает энергию источника питания локально, выдает её при необходимости, а также принимает избытки энергии.

Локальное хранилище энергии постоянно пополняется из основного источника питания через проводник Vcc. В то же время, избыточная энергия должна быть сброшена в источник питания через проводник GND. Сброс энергии в блокировочный конденсатор повышает напряжение на нем, и, по сути, кратковременно создает на схеме локальную область с другим потенциалом. Устранение этого дисбаланса является очень важным и осуществляется при помощи заземления. (Здесь под заземлением понимается не подключение к массе нашей планеты, а соединение с общим проводом источника питания. — Прим. перев.

)

Печатные платы часто имеют отдельные заземленные слои, которые очень эффективны для соединения элементов с общим проводником источника питания. Хорошо проработанная разводка земли имеет первостепенное значение для сброса избыточной энергии. Но будьте осторожны, в сплошном заземленном слое могут возникать вихревые токи, а многочисленные связи с общим проводом — образовывать т.н. земляные петли.

Всегда будет хорошей идеей обратиться к знакомому разработчику со стажем. Большинство ошибок уже было кем-либо допушено раньше, и нет никакой необходимости повторять их до бесконечности.

Подключение двух конденсаторов для трехфазного двигателя

Для запуска двигателя в нагруженном состоянии требуется добавление пускового конденсатора. Он осуществляет работу в первые несколько секунд во время пуска и прекращает работать при выходе ротора на рабочий режим (частоту оборотов). Чтобы подобрать конденсатор для двигателя в этом случае, следует знать, что его расчетное напряжение превышает таковое у рабочего конденсатора в 1,5 раза, емкость — в 2,5-3 раза.

Допускается подключение более одного конденсатора. Если подключать их параллельно, то емкость будет увеличиваться, что удобно для расчетов.

После включения двигателя первые разы необходимо обязательно проследить за его работой. Он не должен слишком нагреваться. Если непонятно, какие конденсаторы для электродвигателя использовать в этом случае, то верный ответ — с меньшей емкостью. Рабочее напряжение составляет не менее 450 В. Чтобы двигатель работал эффективно, необходимо не только правильно определить все параметры используемого конденсатора, но и учесть условия его нагрузки или работы.

Выводы

1. Действительно, чем больше емкость и при этом чем меньше габариты, тем хуже линейность. Вот зависимость искажений от емкости для конденсаторов К10-17а, имеющих корпуса практически одинаковых размеров:

2. Конденсаторы небольшой емкости (менее 5 нФ) имеют хорошую линейность. Причем их искажения (в пределах моей погрешности измерений) от емкости не зависят. Наверное, там используется другой диэлектрик?

3. Конденсаторы в больших корпусах более линейны. Сравните 2-3 и 2-5 (именно они показаны в разломанном виде на фото вверху). Объем корпуса, а главное — объем «кристалла» в несколько раз больше, и искажения различаются более чем на порядок!

4. Конденсаторы разных типов имеют разные характеристики при одной и той же емкости. (Ну это и так понятно, непонятно зачем их столько разных вообще выпускают?!)

5. Интересно, что же происходит в SMD конденсаторах, которые еще меньше по размерам?

6. Зависимость «чем лучше ТКЕ, тем лучше линейность» (а это широко распространенное мнение) в общем случае подтверждается, но не совсем однозначно. Где-то так, а где-то и наоборот. По-видимому все зависит от свойств диэлектрика, причем если ТКЕ нормируется производителями и ТУ, то линейность — нет. Но чтобы хорошенько разобраться в вопросе, нужно провести много экспериментов с конденсаторами разных групп ТКЕ, а это пока не представляется возможным.

7. Качество звучания усилителя с проходыми керамическими конденсаторами большой емкости будет подпорчено.

Отличия пускового и рабочего конденсатора

Пусковой конденсатор нужен для запуска двигателя, поэтому работает короткое время в начале, после чего отключается, тогда как мотор продолжает работать (в обмотке создается сдвиг фаз). Следовательно, время, когда пусковой конденсатор задействован, составляет около 3 секунд, так как за более продолжительный период он может сильно нагреться и привести к замыканию в цепи двигателя, за чем непременно последует выход из строя элементов схемы.

Такой вид конденсатора используется на электродвигателях, схема подключения которых предусматривает этот режим запуска. Для остальных двигателей он тоже может использоваться, если в момент запуска на валу создается повышенная нагрузка, которая не дает ротору свободно вращаться.

Рабочий конденсатор задает сдвиг фаз для постоянной работы двигателя, поэтому рассчитывается с учетом более продолжительной работы. Во время смены фаз цикла на конденсаторе появляется напряжение, превышающее напряжение питания. Это происходит из-за того, что им совместно с обмоткой создается колебательный контур. Последнее также важно учитывать.

Схема подключения коллекторного электродвигателя на 220 Вольт

В электрических дрелях, перфораторах, болгарках и некоторых моделях стиральных машин автоматов используется синхронный коллекторный двигатель. Он успешно запускается и работает в однофазных сетях без лишних пусковых устройств.

Для того, что бы подключить коллекторный электромотор. необходимо соединить между собой перемычкой два конца №2 и №3, один идущий от якоря, а второй от статора. А оставшиеся 2 конца присоединить к электропитанию 220 Вольт.

Помните, что при подключении коллекторного электрического двигателя без блока электроники, он будет работать только на максимальных оборотах, а при запуске будет сильный рывок, большой пусковой ток, искрение на коллекторе.

Может быть мотор и 2 скоростным. тогда со статора будет выходить 3 конец с половины его обмотки. При подключении к нему уменьшится скорость вращения вала, но при этом увеличивается риск нарушения изоляции при запуске мотора.

Для изменения направления вращения необходимо поменять местами концы подключения статора или якоря.

Сравнение конденсаторов обоих типов

Рабочий и пусковой конденсаторы имеют такие отличия:

  • Использование в различных цепях подключения: рабочей и пусковой.
  • Рабочим конденсатором генерируется электромагнитное поле для основного цикла работы двигателя, пусковым задается сдвиг фаз между двумя обмотками — рабочей и дополнительной — в начале работы.
  • Первый подключается последовательно вспомогательной обмотке, второй — параллельно основной.
  • Рабочий конденсатор задействован все время, пока двигатель включен, пусковой только на старте до момента его выхода на постоянный режим.
  • Как уже было отмечено, принцип подбора емкости также отличается. Каждые 100 Вт соответствуют 7 мкФ для рабочего конденсатора и 13-17 мкФ для пускового. Отличается и коэффициент повышения предельно допустимого напряжения по сравнению с номинальным: для рабочего — 1,15, пускового — 2-2,5.

Эти правила помогают хотя бы приблизительно понять, какой конденсатор нужен для запуска электродвигателя.

Стабилизаторы напряжения

Ниже приведен пример стабилизатора питания на базе семейства 78xx (где xx — выходное напряжение):

Конденсаторы, изображенные на рисунке, обычно ставят керамические.

Для вышеупомянутых конденсаторов вы должны / можете дополнительно поставить электролитические или танталовые конденсаторы как на входе, так и на выходе. Их емкость зависит от вашего проекта, поэтому подбирать их придется самостоятельно. Ниже приведены некоторые правила их выбора :

  • увеличьте емкость конденсатора на входе стабилизатора, когда источник напряжения
  • подключен длинным проводом является слабо эффективным, а ваше устройство скачкообразно потребляет значительный ток
  • устройство работает на пределе максимального тока стабилизатора

Емкость этих конденсаторов должна быть примерно в диапазоне от 10 мкФ до 470 мкФ. В очень особых случаях при работе на пределе параметров стабилизатора используйте до 1000 мкФ.

При этом лучше использовать конденсатор меньшей емкости, но с низким эквивалентным последовательным сопротивлением (Low ESR).

Если у вас нет конденсатора с низким ESR, вы можете использовать два обычных, подключенных параллельно, что приведет к падению общего ESR конденсатора.

Принципы подключения

С точки зрения безопасности рекомендуется соблюдать такие правила:

  • Каждый раз после выключения двигателя разряжать конденсатор. Накопленный им заряд может привести к выходу из строя схемы. В некоторых конденсаторах может быть встроен разрядный резистор, который подбирается с учетом того, чтобы полностью его разрядить через 50 секунд после отключения питания.
  • Токоведущие части необходимо изолировать, чтобы не прикоснуться к ним случайно.
  • Корпус конденсатора должен быть надежно закреплен, чтобы не сместился в процессе работы.

Если есть сомнения в способности подобрать правильно конденсаторы для запуска электродвигателя и самостоятельно подключить устройство, то рекомендуется обращаться за помощью к специалисту.

Иногда может возникнуть вопрос, какой конденсатор нужен для двигателя постоянного тока. Дело в том, что подобные двигатели не нуждаются в емкостных элементах в цепи. Но конденсаторы там также могут использоваться, их ставят на щеточный механизм для устранения помех. Они имеют совершенно другой принцип работы.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Проверка работоспособности конденсаторов

Для проверки конденсаторов применяют измеритель емкости. Он может быть выполнен как в виде отдельного прибора, так и быть в составе мультиметра (тестера). Проще рассмотреть вариант проверки с мультиметром:

  • в первую очередь необходимо обесточить конденсатор;
  • далее разрядить его, закоротив выводы;
  • снять одну из клемм;
  • переключить мультиметр в режим измерения емкости конденсаторов;
  • присоединить щупы к выводам конденсатора;
  • считать с экрана показатель емкости.

Режим измерения емкости на мультиметре может изображаться по-разному. В большинстве имеются специальные гнезда Fcx.

Перед началом проверки конденсатора рекомендуется вручную (или автоматически, в зависимости от модели) переключить предел измеряемой емкости. Как правило, максимальное значение составляет 100 мкФ, чего в большинстве случаев достаточно. Существуют и другие приборы, позволяющие измерять емкость. Они выполняются в виде щупов, пинцетов или оснащаются специальными разъемами.

Важно понимать, что номинал, указанный на корпусе конденсатора, должен соответствовать измеряемому значению. Если это не так, то его следует заменить.

Напряжение питания

Каждый микроконтроллер имеет точно определенный уровень напряжения питания, при котором производитель гарантирует его правильную работу. Иногда микроконтроллер одного типа может быть изготовлен в 2-х вариантах, различающихся допустимыми напряжениями питания.

Как правило, максимальный диапазон тактовой частоты микроконтроллера также связаны с напряжениями питания.

Самые распространенные ошибки новичков:

  • они вообще не фильтруют линию питания или ставят фильтры только по выходу стабилизатора напряжения
  • они размещают силовые фильтры подальше от микроконтроллера
  • они не подключают все вводы питания «потому что схема и так работает»
  • они не подключают питания к аналоговой части «потому что я аналоговой частью не пользуюсь»

Хорошая практика для питания микроконтроллеров:

  • каждый вывод питания Vcc (Vdd) должен быть оборудован конденсатором емкостью 100 нФ на землю, расположенным как можно ближе к микроконтроллеру
  • стабилизатор с конденсаторами, номиналы которых вы найдете в его техническом описании, должны гарантировать стабильное питание с максимально возможным энергопотреблением разработанной системой
  • подключите питание к аналоговой части, даже если вы ее не используете.

Замена и подбор конденсатора

Если есть конденсатор, аналогичный сгоревшему, то его достаточно просто установить на место старого. Полярность здесь роли не играет.

Многие не знают, какие конденсаторы для запуска электродвигателя использовать нельзя. Конденсаторы с указанием полярности (электролитические) использовать запрещается. Они термически разрушаются при применении в таких схемах. Как правило, для этой цели существуют специальные, которые предназначены для работы с переменным током и не имеют полярности, а также обладают специальным креплением и клеммами для быстрого монтажа.

Если нужного номинала нет, то проще всего подключить несколько конденсаторов. Делать это необходимо параллельно, так как при таком типе соединения емкость будет суммарной. При этом максимальное напряжение, на работу с которым они рассчитаны, не увеличивается. Такая схема подключения полностью соответствует монтажу конденсатора большей емкости.

Как подключать конденсаторы

В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.

В схеме может быть последовательное и параллельное соединение конденсаторов

Параллельное подключение конденсаторов

При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на рисунке ниже).

Так физически выглядит параллельное подключение конденсаторов

Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.

Расчёт суммарной ёмкости

При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.

Расчёт ёмкости при параллельном подключении конденсаторов

Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.

Пример расчёта

Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.

Пример расчёта конденсаторов при параллельном подключении

Всегда внимательно проверяйте полярность!

Не правильное подключение конденсатора может вызвать повреждение, короткое замыкание или взрыв!

Подбирая конденсаторы, нужно выбирать элементы с соответствующим рабочим напряжением, и помните о правильности их подключения.

Следующий эксперимент с неправильным подключением конденсатора был проведен нами в безопасных контролируемых условиях. Не делайте этого самостоятельно! На фото ниже показано, что происходит с конденсатором, напряжение которого обратно пропорционально.

И кстати, подумайте, а что было бы, если бы мы подключили 20 таких конденсаторов, и при включении все они взорвались? Ниже представлены фото до включения питания и после:

Рабочий конденсаторНеправильно подключенный конденсатор

Бывает, что конденсатор со временем может перестать работать. Нерабочий конденсатор можно определить на глаз, его распирает, стаканчик как бы вздувается. Конденсаторы большей емкости снабжены предохранительными механизмами, в виде прорезей в верхней его части.

Эти прорези работают как предохранительный клапан, который открывается при повышении внутреннего давления до того, как произойдет взрыв. Выше вы видите электролитический конденсатор, в котором сработал такой предохранительный механизм.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]