Если трещит (свистит, пищит, звенит) блок питания.


РЕМОНТ КОМПЬЮТЕРНЫХ БЛОКОВ ПИТАНИЯ

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.
Меры предосторожности.

Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка. Отсос для припоя и (или) оплетка. Служат для удаления припоя. Отвертка Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода. Мультиметр Пинцет Лампочка на 100Вт Очищенный бензин или спирт. Используется для очистки платы от следов пайки. Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG. БП уходит в защиту, БП работает, но воняет. Завышены или занижены выходные напряжения Предохранитель.

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост

Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с о, а плюсовым щупом прозваниваем в направления указанных на картинке.

Конденсаторы

Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Источник

Теория

Блок питания дежурного режима кормит системный контроллер в то время, когда все остальные блоки ТВ выключены. Это нужно для того, чтобы аппарат мог среагировать на кнопку включения, конечно, если это не большая красная кнопка на стене, а ма-а-аленькая кнопочка на пульте ДУ. В нынешних ТВ отдельного блока дежурного режима нет, просто силовой блок питания способен работать при малых нагрузках, а модули вроде развертки или УНЧ отключаются отдельными транзисторными ключами по питанию или на них просто перестаёт поступать сигнал управления, что резко снижает их аппетит и тепловыделение.

Чем такая схема хороша — это понято — она требует меньшего числа деталей. Чем хуже — не так очевидно, но догадаться тоже можно: силовой блок питания всегда подключен к сети. Вас нет дома, за окном молния, ураган, провода посрывало, в розетке 380 вольт — капец блоку питания. Может быть не всему, но уж входной электролитический конденсатор сдохнет наверняка. Это как повезет. Предохранитель, конечно, сгорит, но он не помешает сгореть и контроллеру БП или силовому транзистору. Если телевизор у вас работает не круглосуточно, отдельный дежурный блок может сильно сэкономить бюджет при плохой проводке или частых грозах.

Кроме того, от блока дежурного питания не требуется большая мощность, поэтому его можно сделать на обычном небольшом трансформаторе. А это вещь очень ценная. Потому что тяжелая и прочная. В разных смыслах слова. В частности, в плане теплоотвода и способности сердечника к насыщению. Это означает, что он хорошо будет подавлять разнообразные превышения напряжения средней длительности — от десятой секунды до десятков секунд. Он просто будет переводить излишек энергии, которая не смогла поместиться в магнитопроводе, в тепло. Которого много помещается в медной обмотке и стальном сердечнике.

Ну а в данной конструкции блок питания дежурного режима выполнен отдельным по двум причинам: 1) штатный модуль не любит работать без нагрузки (а сисконтроллер для него не нагрузка); 2) предпрогрев кинескопа происходит с отключенной развёрткой, развёртка является основной нагрузкой БП, далее см. п. 1.

Блок дежурного режима расположен на отдельной плате, которая включает в себя также силовые реле. Плата отдельная по двум причинам: 1) детали тяжелые и вешать их на большой тонкий текстолит не хотелось; 2) детали не унифицированны — т.е. для каждого экземпляра ставились те, что Бог пошлёт. Соответственно, разводка платы каждый раз была разная, да и схема выпрямителя иногда менялась (мост или умножитель).

Схема с обычным выпрямителем использовалась для трансформаторов, которые могут отдать 12-16 в под нагрузкой (накал на второй ступени предпрогрева — около 500-600 ма). Схема с умножителем напряжения использовалась для трансформатора с обмоткой, дававшей около 7 в.

Релюшки были разные. РЭС-22, например, с параллельно-попарно включенными контактами успешно управляет накалом. Требования к ней просты и понятны — хорошая изоляция. Когда накал находится в рабочем режиме, потенциал между ним и цепями предпрогрева может достигать сотни-другой вольт. Допустимый же ток не очень большой — около ампера. Причем импульсного тока (при включении) нет — контакты замыкаются, будучи обесточенными. Только при выключении ТВ, реле может разомкнуть контакты до того, как остановится блок развёрток.

Что касается реле силового блока питания — с ней сложнее. В замкнутом состоянии протекающий через контакты ток не велик — 500 ма — это максимум. В среднем. Требования к изоляции попроще — важна только изоляция между обмоткой и контактами — но она и так обычно очень достойная. Хуже другое — ток замыкания. В нагрузке у неё стоит импульсный блок питания с большими конденсаторами. Импульс первоначального заряда отчасти ограничен резистором 5 ом, который находится на штатной плате фильтров, но всё равно — даже 310 в / 5 ом = 62 а. Пусть и недолго. В первом экземпляре мной был использован пускатель от советских телевизоров, кажется, он назывался КУЦ-1. В более поздних сначала были релюшки РП21-УХЛ4 (со слегка ослабленной пружиной якоря), затем они кончились и я перешёл на импорт: TRIH-12VDC-SB-1CH. Попытка использовать в этой цепи РЭС-10 убила её после примерно 20-и включений — контакты спеклись (когда-то давно был другой опыт — РЭС-22 включала МП-3, но без резистора в плате фильтров. Контакты спекались регулярно, раз в месяц. Потом резистор был добавлен, но это был МЛТ-2. Сгорал независимо от сопротивления (2..10 ом) раз в три месяца. Не темнел плавно, а именно тонкой спиральной полоской. Два параллельных МЛТ-2 вроде решили проблему. Импульсный режим, понимаешь…).

Есть сейчас ещё такие интересные штуки, как оптотиристоры, расчитанные на токи до десятков ампер… Может быть это вариант ? Но те, что я видел, стоили почти как реле… Рисковать не хотелось. Но когда нибудь попробую и их.

Использование термисторов для ограничения бросков тока в источниках питания

Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.

Рис.1 Термистор

Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.

Рис.2 ТКС термистора

Нас интересуют следующие параметры термистора:

Сопротивление при 25˚С

Максимальный установившийся ток

Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

Энергия заряженного конденсатора определяется формулой:

E = (C*Vpeak²)/2

где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

Как проводится тестовое испытание, можно посмотреть тут на седьмой странице.

Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

Источник

Мощный из нЕмощных. Обеспечиваем дополнительное питание

  • Вступление
  • Постановка задачи
  • Принцип модификации
  • Разбираем блок питания
  • Отключение анализа напряжений
  • Замена четвертьмоста на мост
  • Выпаиваем лишнее
  • Доработка стабилизации 12 В
  • Увеличиваем рабочий ток
  • Испытания
  • Заключение

Опять апгрейд, опять проблема с блоком питания. Как и в прошлый раз, не хватает мощности. Казалось бы, пустяки, можно купить новый. Но такой блок стоит приличных денег. Как всегда, они все уходят на более «важные» части – процессор, видеокарту, память… Ох как не хочется тратиться. Но, делать нечего, приходится покупать новый блок питания. И остается старый никому не нужный, вполне исправный блок. Иногда даже несколько от предыдущих апгрейдов. Но не хватает только мощности линий 12 В! Всего остального в достатке.
А почему бы не объединить несколько блоков в один более мощный? В начале двухтысячных так и делали. Обеспечить синхронное включение двух блоков просто — достаточно соединить у них «земляные» провода и контакты PS_ON (зеленый) 20-ти штырьковых разъемов. На один блок вешали приводы и винчестеры, а на другой все остальное. Тогда это помогало. Но сейчас основное энергопотребление делят между собой видеокарта и процессор. А это линии 12 вольт.

Теперь если использовать два старых блока и нагрузить у них только 12-ти вольтовые линии, произойдет перекос напряжений и стабильность этих самых напряжений нарушится. Все из-за того, что в старых блоках стабилизируется не каждое напряжение отдельно, а среднее значение между 5 и 12 В. Перекос напряжений возникает из-за неравномерного распределения нагрузки по шинам +12 В и +5 В. Причем при преобладающем потреблении 12 В оно как раз понижается, а 5 В повышается. Даже, если бы это явление и не происходит, старый блок по линии 12 В отдает в лучшем случае треть мощности. В современных условиях этого мало. И КПД у такой системы будет невелик.

Избежать этого можно доработкой второго блока питания так, чтобы он стабилизировал только линию 12 В и отдавал в нее всю свою мощность. В 2004-м мною на эту тему была написана статья. Там описывался способ убрать только перекос напряжений. Этого уже недостаточно. Теперь все выглядит иначе.

Несколько лет назад появились в продаже дополнительные блоки питания для видеокарт: FSP VGA Power ,

Обычный компьютер редко требует блок питания мощнее, чем 450 Вт, однако все меняется, когда речь заходит о производительных игровых системах. Современная топовая видеокарта потребляет изрядно. А есть видеокарты с двумя GPU. А еще их можно объединить в SLI или CrossFire… Тут уже неплохо обладать двумя независимыми линиями питания +12 В с силой тока в 30 А, что позволяет организовать SLI или CrossFire, не нагружая основной блок питания системы.

Применение нескольких блоков возможно потому, что производители стали оснащать материнские платы разъемами питания процессора электрически не связанного с 20-ти контактным разъемом АТХ. Разъемы дополнительного питания существуют и на видеокартах. Их тоже можно запитывать от отдельного источника. К сожалению, большого распространения подобные девайсы не получили. Почему? Думаю, дело в цене. Проще добавить еще немного и купить полноценный блок.

анонсы и реклама

RTX 3070 Ti Aorus по цене не Ti

RTX 3080 за 288 тр в Ситилинке

RTX 3090 MSI за 539 тр

Зарабатывай деньги, участвуя в наполнении нашего сайта

Еще одна 3080 даже дешевле — смотри цену

Крутая 3060 Ti Gigabyte Aorus подешевела 2 раза

А если самостоятельно изготовить такой блок питания? Из старого, ненужного. Обойдется гораздо дешевле.

Итак, задача – взять старый блок питания и заставить отдавать по линии 12 В всю мощность, на которую он способен. Остальные линии демонтируются. И чтобы этот блок включался синхронно со вторым блоком, питающим все остальное железо. Обеспечить возможность расширения системы. Не хватит одного – дополнить еще одним.

Для переделки желательно брать блок питания мощностью от 350 Вт. Почему? Закон Ома. При мощности 350 Вт и напряжении 12 В ток будет 29,2 А. Нужный минимум.

Существует два типа блоков. Старые, с основной нагрузкой по линии 5 В, и новые с основной нагрузкой по линии 12 В. В этой статье рассмотрим блок с мощной 5-ти вольтовой линией. В качестве подопытного возьмем блок питания PowerMan IW-P430J2-0.

Он сделан на микросхеме ШИМ SG6105. Точно такая же переделка возможна, если в блоке стоит ее аналог IW1688. Следуя принципу, изложенному в статье, можно переделать и блок питания с другим ШИМ.

ПРЕДУПРЕЖДЕНИЕ:

Перед тем как взяться за эту работу предупреждаю, что в процессе переделки можно легко попасть под опасное для жизни напряжение, а также сжечь блок питания. Вы должны обладать соответствующей квалификацией и все работы делаете на свой страх и риск. Автор за это ответственности не несет.

Для работы понадобятся некоторые инструменты и детали:

  • Паяльник, желательно два. Один обычный, другой с оловоотсосом. Либо отдельно такой инструмент.
  • Мультиметр. Пинцет. Бокорезы.
  • Лампочка от спота на 12 вольт с патроном. Для проверки.
  • Резисторы постоянные номиналом 47 кОм, 33 кОм, 6,2 кОм, 3,3 кОм, 1,5 кОм, 100 Ом. Но лучше, чтобы под рукой было несколько резисторов близких по номиналу к каждому из списка.
  • Конденсаторы, один-два емкостью 2200 – 4000 мФ на напряжение 16-25 В.
  • Диодные сборки 30 – 40 А на напряжение от 40 В. Две – три.
  • Провода, разъемы для подключения видеокарты.

Модернизируем блок питания так, чтобы он всю мощь, на которую способен, отдавал только в линию 12 В. Но микросхема ШИМ блока питания анализирует все напряжения, выдаваемые блоком, и в случае отклонения их от номинала отключает блок. Начнем с того, что отключаем мониторинг всех напряжений, кроме 12 В. Выпаиваем все лишние детали. Заставляем блок работать только на одну линию. И честно выдавать все, на что он способен в ОДНУ эту линию 12 В.

Принцип отключения мониторинга прост. Надо обмануть SQ6105. В БП есть «блок питания дежурного режима». Это независимый источник напряжением 5 В. От него питание идет на SQ6105, до включения всего блока.

Например, как отключить мониторинг 5 В? Подать на вывод SQ6105, отвечающий за этот мониторинг, напряжение 5 В. А взять его с этой самой «дежурки». Мониторинг +3,3 В? Взять с «дежурки» 5 В и с помощью резисторного делителя подать на SQ6105 требуемые 3,3 В! 12-ти вольтовая линия остается. Теперь поэтапно и подробно.

Вынимаем плату. Подпаиваем к ней провод с вилкой. Для удобства включения. На недолго и с небольшой нагрузкой блок можно включать без вентилятора. Подключаем на выход блока питания нагрузку – лампочку 12 В. Провод PS-ON на землю это значит — зеленый и черный провода 20-ти пинового разъема закорачиваем скрепкой. Лампочка горит. Блок работает.

Отключаем БП от сети 220 В. (Нужно выдернуть провод питания из розетки!) Это важно. Иначе удар током и, возможно, смертельный исход. С электричеством шутки плохи. На плате находим микросхему SQ6105, переворачиваем плату и ищем место, где она впаяна. Смотрим нумерацию выводов SQ6105 и сверяем со .

Приступаем к работе.

Отключаем анализ SQ6105 плюс 5 В — перерезаем дорожку, идущую от ноги 3, SQ6105 (V5 вход напряжения +5V,

а сам вывод 3 соединяем пайкой с выводом 20 SQ6105 перемычкой ( ).

Тем самым отсоединяем SQ6105 от схемы блока питания и подменяем мониторинг выходных 5-ти вольт пятью вольтами «дежурки». Теперь, даже если блок питания не выдает 5 В в нагрузку, SQ6105 считает что все нормально и защита не срабатывает. Готово.

Включаем БП в сеть для проверки, лампочка должна гореть. Если лампочка не загорается, проверяем величину напряжения выдаваемого источником дежурного питания. Если больше 5 В, то перемычку следует заменить резистором величиной 100-200 Ом.

Отключаем БП от сети 220 В. Убираем определение SQ6105 плюс 3,3 В — перерезаем дорожку около вывода 2

и подпаиваем два резистора, 3,3 кОм от вывода 2 на корпус , 1,5 кОм от вывода 2 на вывод 20 ().

Включаем БП в сеть, если не включается, надо подобрать резисторы более точно, чтобы получить на выводе 2 +3,3 В. Можно использовать подстроечный резистор. После каждой переделки лучше проверять блок на работоспособность, тогда в случае чего не придется долго ломать голову над причиной.

Отключаем БП от сети 220 В. Убираем определение SQ6105 минус -5 В и — 12 В — выпаиваем R44 или что там стоит (около вывода 6),

а сам вывод 6 соединяем с корпусом через резистор 33 кОм ().

Включаем БП в сеть, если не включается, надо подобрать резистор более точно. В данном случае блок заработал при номинале резистора 31 Ом. Номинал получен последовательным соединением резисторов. Напряжение на ноге 6 микросхемы должно быть не более 2,1 В. Иначе блок не включится. Уменьшая номинал резистора – уменьшаем напряжение. Замерить напряжение на ноге 6 можно, просто включив блок в сеть, без включения PS ON.

Еще раз смотрим схему блока питания. В моем блоке питания самая мощная линия это 5 В. Об этом говорит наибольшее из всех обмоток сечение провода выхода трансформатора. Три провода в дросселе групповой стабилизации против одного линии 12 В. А также бирка на блоке питания. По ней блок может выдать 32 А тока. А линия 12 вольт слабая.

А нужно как раз 12. Что делать? Берем линию 5 вольт и вместо двухполупериодного выпрямителя со средней точкой на диодной сборке соберем

На выпрямление 5-ти вольт стоит одна сборка на 40 А. Но есть возможность поставить еще одну, с другой стороны радиатора. Это потому что печатные платы одинаковые у всей линейки этих блоков от 300 до 450 Вт. Ставим еще одну. При этом снимаем первую, добавляем термопасту КПТ-8. Не забывать про изолирующие прокладки. После сборки проверяем мультиметром, не звонится ли сборка на корпус. Этого быть не должно.

На выпрямление 3,3 вольта стоит сборка на 40 А. Ее переставляем горизонтально. Сборку, отвечающую за выпрямление 12 вольт, откручиваем и заменяем на 40 амперную, которую ставим так же горизонтально.

Я ставлю сборки с таким конским запасом по току из-за того, что использую их из старых блоков питания. А они раньше высокой надежностью не отличались. Да и две сборки греются меньше, чем одна. Опять надежность выше. В принципе, можно было поставить в прямом направлении одну 40 А, а остальные две по 20 А. Но я люблю запас и надежность.

Теперь вырезаем полоску меди и с ее помощью соединяем пайкой крайние выводы закрепленных горизонтально диодных сборок. Медь на фотографии белая, поскольку посеребренная (спасибо СССР). Замыканий опасаться не следует, поскольку и радиатор и эта полоса соединяются с общим проводом. Кладем радиатор на стол, средний вывод сборки соединяем с левым выводом другой сборки. Как на фотографии ниже.

Переворачиваем радиатор и соединяем средний вывод сборки с левым выводом второй сборки.

ВНИМАНИЕ.

Средние выводы подпаяны к разным анодам сборок. Получается, что выводы сборок соединены каждый со своим выводом трансформатора по линии 5 В.

Соединение должно соответствовать схеме (см. ).

Впаиваем радиатор со сборками на место. Теперь отключаем среднюю точку трансформатора. Просто откусываем провод, идущий от трансформатора на плату. Откусываем около трансформатора. А провод припаиваем к медной пластине, соединяющей аноды диодных сборок на радиаторе. Длины провода немного не хватило, и я удлинил его проводом сечением 4 мм квадратных.

Распиновка основного коннектора БП

Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.

Штекеры БП: А – старого образца (20pin), В – нового (24pin)

Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.

Нагрузка на БП

Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.

Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.

Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.

Способ 1. Проверка блок питания на работоспособность

Теперь давайте проверим рабочий ли блок питания. Для этого воспользуемся скрепкой в качестве перемычки.

  1. Отключаем компьютер от сети 220В.
  2. Отсоединяем все провода блока питания, подключенные к материнской плате, жесткому диску и т.д.
  3. Замыкаем скрепкой зеленый провод с любым черным на 24 pin коннекторе, как показано на фото ниже.

Проверьте вращение вентилятора — он должен крутится легко. Если крутится с трудом, то его нужно смазать.

Почистите БП питания от пыли и осмотрите на наличие вздутых конденсаторов. Вздутые конденсаторы нужно заменить.

Если у вас возникли проблемы с компьютером, то можете обратиться ко мне за консультацией — вступайте в группу ВК.

Методика проверки (инструкция)

После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.

Если таковы не обнаружены, переходим к следующему алгоритму действий:

Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;

Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.

Видео: правильный ремонт блока питания ATX. https://www.youtube.com/watch?v=AAMU8R36qyE

Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;

С чего начать как найти нужную схему

Самый лучший вариант ремонта – если имеется схема на конкретный блок питания. На самом деле все несколько сложнее. Производители не прикладывают к документации на блоки питания принципиальных схем. Приходится их искать в интернете. Проблема в том, что даже известные изготовители не проявляют энтузиазма в выкладывании напоказ своих разработок, а небольшие фирмы из Юго-Восточной Азии вообще не имеют своих сайтов. Приходится собирать по всей сети то, что нашли и выложили энтузиасты. И если для компьютерных блоков питания схему найти относительно просто, то для импульсников, предназначенных, например, для питания LED-лент, дело обстоит сложнее.

Так, для блока питания SKS-320 при запросе схемы известная поисковая система выдает только одну адекватную картинку (явно нарисованную добровольцем из Китая). На примере этого устройства далее и будет описан алгоритм поиска неисправности.

Для других источников схемы может не найтись вовсе. В таком случае лучший выход – срисовать схему с платы самостоятельно. Это требует определенной квалификации – надо, как минимум, знать, как выглядят электронные компоненты, а также приблизительно представлять ожидаемый результат. Для этого надо знать, по какой схемотехнике выполняются блоки питания. В целях облегчения работы можно на плате пометить маркером дорожки питания и пронумеровать элементы (если они уже не пронумерованы).

Другой путь – найти подобную схему, которая может полностью и не совпасть с реальным блоком, но это лучше, чем ничего.

О роли варисторов/терморезисторов в блоках питания

Качественные блоки питания обеспечивают долговременную надежную и безаварийную работу вычислительного оборудования и другой техники.

Так как при майнинге используются мощные импульсные источники питания, питающие дорогостоящее оборудование, то их выход из строя влечет за собой весьма неприятные последствия.

В связи с этим стоит разобраться с некоторыми особенностями их работы, которые помогут избежать поломок, вызванных непониманием процессов, происходящих внутри импульсных источников питания.

Переходные процессы в радиоэлектронной аппаратуре и вычислительной технике

При эксплуатации любых электрических приборов в момент переключения возникают нелинейные переходные процессы, которые в некоторых случаях незаметны, а иногда приводят к выходу устройства из расчетного режима работы, что сопровождается повышенной нагрузкой на его элементы и может привести их к выходу из строя.

Переходные процессы всегда возникают в момент коммутации цепей с нагрузкой, имеющей индуктивный и/или емкостной характер. В большинстве случаев они являются вредными для работы устройства, поэтому конструкторы аппаратуры обычно предпринимают меры для их сведения до минимума.

Так как любой участок цепи имеет в той или иной мере LC-параметры, то нелинейные процессы всегда происходят в любой электронике. В мощных блоках питания, использующихся для майнинга, установлены конденсаторы и катушки большой емкости/индуктивности, поэтому переходные процессы в них могут быть очень значительными.

Кратковременный всплеск переменного напряжения, значительно превышающий нормальное значение:

Во время включения в работу блока питания большой мощности в его контурах протекают импульсы тока огромной величины. Всплески напряжения, вызванные переходными процессами, могут многократно превышать номинальное напряжение, протекающее в сети.

Всплески напряжения (voltage spikes), возникающие на графике синусоидального переменного напряжения, вследствие переходных процессов (transients):

Для борьбы со всплесками напряжения в момент включения блоков питания в них устанавливаются специальные защитные элементы. Они обычно справляются со своей ролью, но иногда, при нештатных ситуациях, не справляются со своими задачами. Чтобы не допускать их возникновения (или хотя бы свести до минимума), нужно знать принципы работы, назначение и состав защитных элементов на входе импульсного блока питания.

Применение VRM

На плате находится разъём для подключения питания, на сегодняшний день стандарт предусматривает установку минимум двух разъемов – 24-контактного ATX и 4-контактного ATX12V для дополнительной линии 12В. Иногда производители материнских плат устанавливают 8-контактный EPS12V вместо ATX12V, через него можно подвести две линии 12В. Питание, подаваемое блоком питания, проходит преобразование, стабилизацию и фильтрацию с помощью силовых полевых транзисторов (MOSFET, «мосфетов»), дросселей и конденсаторов, составляющих VRM (Voltage Regulation Module, модуль регулирования напряжения). Питание процессора и чипсета осуществляется одним VRM, питание модулей памяти – чаще всего другим. Дополнительно для стабилизации питания, подаваемого через разъёмы PCI Express, иногда устанавливаются стандартные разъёмы Molex.

VRM разработан для того, чтобы существующие системные платы могли поддерживать несколько типов процессоров, а также те, которые появятся в будущем. Ведь каждый процессор имеет свое напряжение питания. При установке процессора в материнскую плату по соответствующим контактам VID (4 или 6 штук) тот определяет модель установленного процессора и подает на его кристалл (ядро) соответствующее напряжение питания. Фактически, комбинация 0 и 1 на выводах VID задает 4 или 6-битный код, по которому VRM «узнает» о модели процессора.

Для примера рассмотрим питание ядер процессоров модели Intel Core 2 Extreme (Conroe, техпроцесс, 65 нм, частота 2,93 ГГц, 4 Мбайт L2).

Для этого процессора значение VID находится в диапазоне 0,85–1,36525 В, максимальный ток для верхней модели E6800 может достигать величины 90 А, для остальных, представленных моделями E6300, Е6400, Е6600, Е6700, — 75 А. VRM для процессоров Intel Core 2 Duo должен удовлетворять спецификации 11.0.

Существует два типа регуляторов: линейный и импульсный. Применявшийся в более старых платах линейный регулятор напряжения представлял собой микросхему, понижающую напряжение за счет рассеяния его избытка в виде тепла. С уменьшением требуемого напряжения росла тепловая мощность, рассеиваемая такими регуляторами, поэтому они снабжались массивными радиаторами, по которым их легко было найти на материнской плате. При установке в материнскую плату процессора, потребляющего большую мощность, регулятор (а с ним и материнская плата) мог выйти из строя из-за перегрева. Поэтому в современных материнских платах применяется импульсный регулятор, содержащий сглаживающий фильтр низких частот, на который подается последовательность коротких импульсов полного напряжения.

Импульсный стабилизатор содержит реактивно-индуктивный LC-фильтр, на который короткими импульсами подается полное напряжение питания, и за счет инерции емкости и индуктивности выравнивается до требуемой величины, причем бесполезных потерь энергии практически не происходит. Стабильность напряжения поддерживается путем управления частотой и шириной импульсов (широтно-импульсная модуляция, ШИМ). При широтно-импульсной модуляции в качестве несущего колебания используется периодическая последовательность прямоугольных импульсов, а информационным параметром, связанным с дискретным модулирующим сигналом, является длительность этих импульсов. Периодическая последовательность прямоугольных импульсов одинаковой длительности имеет постоянную составляющую, обратно пропорциональную скважности импульсов, то есть прямо пропорциональную их длительности. Пропустив импульсы через ФНЧ с частотой среза, значительно меньшей, чем частота следования импульсов, эту постоянную составляющую можно легко выделить, получив стабильное постоянное напряжение.

Применение импульсных стабилизаторов позволяет значительно сократить тепловыделение, однако создает дополнительный источник помех, который может влиять на работу видео- и звуковых адаптеров.

За счет инерционности фильтра импульсы сглаживаются в требуемое постоянное напряжение. КПД такого преобразователя весьма высок, поэтому паразитного нагрева почти не происходит. Узнать импульсный регулятор напряжения на плате можно по катушкам индуктивности. Во всех новых платах применяется многоканальный (многофазный) преобразователь напряжения, который понижает напряжение питания до необходимых 0,8—1,7 В на ядре процессора (в зависимости от модели).

Таким образом, VRM – это по сути ШИМ-регулятор на микросхеме с преобразователями на MOSFET и фильтром. Как правило, напряжение на системной плате выше, чем на ядре процессора.

Традиционно основные регуляторы напряжения расположены вокруг процессорного разъема. Учитывая высокие значения потребляемых токов, они создаются многоканальными (многофазными). Обычно их число три-четыре, но на топовых платах их число может достигать 8. Отказ от одноканального питания снижает нагрузку на регулирующие транзисторы. С целью улучшения температурных режимов их работы, а также повышения надежности, силовые транзисторы нередко снабжаются средствами охлаждения (радиаторами).

В дополнение к многоканальному VRM, индивидуальными системами энергопитания снабжены цепи видеоадаптера и модулей оперативной памяти. Они обеспечивают необходимые уровни напряжений и токов, а также снижают взаимное влияние, передаваемое по силовым шинам.

Большое количество вентиляторов, сосредоточенных в небольшом объеме, создает сравнительно высокий уровень акустического шума. Уменьшить его можно специальным дизайном материнских плат, предусматривающим использование решений на основе тепловых трубок (heat pipe).

В качестве примера можно привести плату Gigabyte GA-965P-DQ6. На ней радиаторы, установленные на обеих микросхемах чипсета, соединены несколькими тепловыми трубками с радиаторами, установленными на силовых транзисторах VRM.

Такое решение обеспечивает эффективное перераспределение тепловых потоков между несколькими радиаторами. В результате выравниваются температуры элементов, работающих в ключевых режимах, являющихся источниками неравномерного нагрева, как в пространстве, так и во времени. Охлаждению же всей конструкции способствует общий дизайн, предусматривающий использование воздушных потоков, порождаемых вентиляторами процессора и кулера.

Оценивая эффективность данного решения, необходимо отметить, что еще одним фактором, способствующим уменьшению тепловой и электрической нагрузок на транзисторы VRM, является реализация большого количества каналов (фаз) питания. Например, в архитектуре указанной платы их двенадцать. Столь большое количество каналов существенно упрощает конструкцию VRM, улучшает развязку по линиям питания, уменьшает электрические помехи и увеличивает устойчивость работы компьютерных подсистем. Кроме того, описанная конструкция с пассивными кулерами, аналог которой активно используется, кстати, в бесшумных моделях видеоадаптеров этого же производителя, уменьшает акустический шум и от материнской платы.

Конструкция регулятора напряжения позволяет подавать на него 5 или 12 В (на выходе – напряжение питания процессора). В системе в основном используется напряжение 5 В, но многие компоненты в настоящее время переходят на 12 В, что связано с их энергопотреблением. Кроме того, напряжение 12 В используется, как правило, приводным электродвигателем, а все другие устройства потребляют напряжение 5 В. Величина напряжения, потребляемого VRM (5 или 12 В), зависит от параметров используемой системной платы или конструкции регулятора. Современные интегральные схемы регуляторов напряжения предназначены для работы при входном напряжении от 4 до 36 В, поэтому их конфигурация всецело зависит от разработчика системной платы.

Как правило, в системных платах, предназначенных для процессоров Pentium III и Athlon/Duron, использовались 5-вольтные регуляторы напряжения. В последние годы возникла тенденция к переходу на регуляторы, потребляющие напряжение 12 В. Это связано с тем, что использование более высокого напряжения позволяет значительно уменьшить текущую нагрузку. Например, если использовать тот же 65-ваттный процессор AMD Athlon с рабочей частотой 1 ГГц, можно получить несколько уровней нагрузки при различных величинах потребляемого напряжения

При использовании напряжения 12 В сила потребляемого тока достигает только 5,4 А или, с учетом 75% эффективности регулятора напряжения, 7,2 А. Таким образом, модификация схемы VRM системной платы, позволяющая использовать напряжение 12 В, представляется достаточно простой. К сожалению, стандартный блок питания ATX 2.03 содержит в основном силовом разъеме только один вывод +12 В. Дополнительный разъем вообще не содержит выводов +12 В, поэтому толку от него немного. Подача тока силой 8 А и более на системную плату, осуществляемая при напряжении +12 В через стандартный провод, может привести к повреждению разъема.

Для повышения энергообеспечения системных плат в Intel была создана новая спецификация блоков питания ATX12V. Результатом этого стал новый силовой разъем, предназначенный для подачи дополнительного напряжения +12 В на системную плату.

В плате ASUS P5B-E Plus, основанной на чипсете Intel P965 Express, VRM используется 4-канальный, а значит, более приспособленный к надежной поддержке мощных (или сильно разогнанных) процессоров. Дизайном предусмотрено охлаждение половины из ключевых транзисторов, но на данной модели радиатор не установлен. Разъем подачи питания на VRM сделан 8-контактным, чтобы уменьшить вдвое ток, проходящий по линиям +12 В. Впрочем, если у вашего блока питания нет такого разъема, можно подключить плату и через 4-контактный разъем.

Питание процессора и чипсета осуществляется одним VRM, питание модулей памяти и видеоадаптера – чаще всего другими. Это обеспечивает необходимые уровни напряжений и токов, отсутствие просадок по питанию, а также снижает взаимное влияние, передаваемое по силовым шинам.

Зачем нужны защитные цепи на входе импульсных блоков питания

В качественных импульсных блоках питания обычно устанавливаются входные цепи, которые решают ряд проблем, среди которых:

Для защиты входных цепей блока питания от всплесков напряжения и тока используются варисторы (varistors) и термисторы, а также предохранители, варисторы, а также разрядники (surge arresters).

MOV-варистор и термисторы с позитивным и негативным коэффициентом сопротивления:

Как обеспечивается защита от всплесков напряжения и тока на входе блока питания?

За защиту от всплесков напряжения на входе импульсного БП в рабочем режиме обычно отвечают варисторы и разрядники. Для защиты от бросков тока на входе применяют предохранители, а также термисторы.

Простейшая схема включения защитного варистора в блоке питания:

Схема включения защитных элементов на входе импульсного источника тока с применением варисторов и разрядников:

Ремонт блока питания компьютера: схемы для инструкции

Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.

Структурная схема

На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.

Как работает варистор?

Варистор — это резистор, сопротивление которого изменяется в зависимости от приложенного напряжения. В нормальных условиях оно очень большое (мегаОмы) и не оказывает особого влияния на работу электрической цепи при параллельном включении.

Вольт-амперная характеристика варистора:

При значительном повышении напряжения на варисторе сопротивление падает, это приводит к поглощению энергии всплеска и выделении ее в виде тепла.

Варисторы нужны для защиты радиоэлектронных устройств от бросков высокого напряжения за счет того, что их сопротивление резко падает с увеличением поданного на них напряжения:

Это спасает другие компоненты от выхода из строя, хотя иногда приводит к выгоранию самого варистора, спасающего своим героическим поведением более дорогие электронные элементы. Варисторы устанавливаются на входе БП перед диодным выпрямителем, так как они дополнительно выполняют фильтрующую функцию — гашение помех, возникающих при выключении диодного моста.

Варистор TVR 14471 на входе блока питания Be Quiet Dark Power Pro мощностью 1200 ватт с платиновым сертификатом:

Блок питания ATX, устройство и принцип работы. Часть 1.

Импульсный генератор подробнее.

Схема ВЧ преобразователя состоит с мощных транзисторов, которые работают в режиме ключа и импульсного трансформатора. БП может собой представлять однотактный и двухтактный преобразователь: — однотактный: открывается и закрывается один транзистор; — двухтактный: поочередно открываются и закрываются два транзистора. Смотрим рисунок.

Управление ключами ШИМ контролером (494).

Ниже приведена реальная схема БП.

1. Блок Выпрямляет и фильтрует переменное напряжение, а также здесь находится фильтр от помех которые создает сам БП. 2. Блок Этот блок формирует +5VSB (дежурное напряжение), а также питает контролер ШИМ. 3. Блок На третий блок (ШИМ — контролер 494) положены такие функции: — управление транзисторными ключами; — стабилизация выходных напряжений; — защита от короткого замыкания. 4. Блок В состав этого блока входят два трансформатора, и две группы транзисторных ключей. Первый трансформатор формирует напряжение управления для выходных транзисторов. 1 группа транзисторов усиливает генерируемый сигнал TL494 и передает его первому трансформатору. 2 группа транзисторов нагружена на основной трансформатор, на котором формируются основные напряжения питания. 5. Блок В состав этого блока входят диоды Шоттки для выпрямления выходного напряжения трансформатора, а также фильтр низких частот. В состав ФНЧ входят электролитические конденсаторы больших емкостей (зависит от производителя БП) и дросселей, а также резисторов для разрядки этих конденсаторов при выключенном БП.

Немного о дежурке.

Различиями между блоками стандарта АТХ от БП стандарта АТ в том, что БП АТХ стандарта имеют источник дежурного напряжения питания. На 9 контакте (20 контактного, фиолетовый провод) разъема вырабатывается напряжение +5VSB которое идет на мат плату для питания схемы управления БП. Эта схема осуществляет формирования сигнала «PS-ON» (14 контакт разъема, зеленый провод). В данной схеме преобразователь работает на частоте, определяемой в основном параметрами трансформатора Т3 и номиналами элементов в базовой цепи ключевого транзистора Q5 — емкостью конденсатора С28 и сопротивлением резистора начального смещения R48 [1]. Положительная обратная связь на базу транзистора Q5 поступает с вспомогательной обмотки трансформатора Т2 через элементы С28 и R51. Отрицательное напряжение с этой же обмотки после выпрямителя на элементах D29 и С27, в случае если оно превышает напряжение стабилизации стабилитрона ZD1 (в данном случае 16 В) также подается на базу Q5, запрещая работу преобразователя. Таким способом выполняется контроль за уровнем выходного напряжения. Напряжение питания с сетевого выпрямителя на преобразователь поступает через токоограничительный резистор R45, который при его выходе из строя можно заменить предохранителем на ток 500 мА, либо исключить совсем. В схеме на рис.1 резистор R56 номиналом 0.5 Ом, включенный в эмиттер транзистора Q5 является датчиком тока, при превышении тока транзистора Q5 выше допустимого напряжение с него через резистор R54 поступает на базу транзистора Q9 типа 2SC945 открывая его, и тем самым запрещая работу Q5. Подобным образом осуществляется дополнительная защита Q5 и первичной обмотки Т3. Цепочка R47C29 служит для защиты транзистора Q5 от выбросов напряжения. В качестве ключевого транзистора Q5 в указанной модели БП применяются транзисторы KSC5027. В предыдущей моей статье БП был на аналогичных элементах (дежурка).

А теперь рассмотрим БП вживую.

На этом пока остановлюсь. Всем спасибо за столь долгое внимание. Надеюсь хоть кому то принес пользу Жду комментариев и предложений по дополнению. Продолжение будет…

Для чего в блоке питания применяются термисторы?

Термистор — это резистор, изменяющий свое сопротивление из-за температуры.

В блоках питания обычно используют термисторы с негативным температурным коэффицентом (NTC, Negative Temperature Coefficient), включенные последовательно с нагрузкой. В холодном состоянии они имеют сопротивление 6-12 Ом, поэтому при включении блока питания происходит их разогрев. Из-за нагрева сопротивление NTC-термисторов падает до 0.5-1 Ома и они уже не оказывают существенного влияния на работу устройства.

В дорогих блоках питания после успешного старта блока питания термисторы отключаются, ток начинает проходить через проводник с нулевым сопротивлением, что обеспечивает холодное состояние термистора (постоянную готовность к повторному включению БП), а также экономит электроэнергию, которая попусту рассеивается во время работы источника питания в штатном режиме.

Благодаря тому, что термистор принимает на себя «часть удара» в момент включения, остальные компоненты не страдают.

Простейшая схема включения защитного термистора на входе блока питания:

Варисторы обеспечивают защиту высоковольтной части блока питания от всплесков напряжения, а термисторы — от большого тока.

Варистор VZ1 и термистор TR101 на схеме блока питания Chieftec APS-550S мощностью 550W:

Контроль основных напряжений и сигнала Power Good

Напряжение на выводе PG должно быть равным +5 В.

Напоминаем, что эти напряжения должны находиться в пределах 5% поля допуска.

Сигнал Power Good служит для запуска процессора.

При включении блока питания в нем происходят переходные процессы, сопровождающиеся скачками выходных напряжений.

Это может сопровождаться потерей или искажениями данных в регистрах процессора.

Если сигнал на выводе PG неактивен (напряжение на нем равно нулю), то процессор находится в состоянии сброса и не стартует.

Сигнал на этом выводе появляется обычно через 0,3 – 0,5 с после включения. Если после включения напряжение там осталось равным нулю – это сложный случай, оставим его профессионалам.

Если напряжение дежурного источника будет ниже 4,5 В, компьютер может не запуститься. Если оно будет выше (бывает и такое), компьютер запустится, но он может «подвисать» и сбоить.

Если напряжение дежурного источника не находится в пределах нормы, это тоже сложный случай, но можно выполнить несколько типовых процедур проверки деталей.

К чему может привести экономия на варисторах и термисторах в блоке питания?

В бюджетных блоках питания производители экономят на элементной базе и не устанавливают варисторов. Для защиты таких БП стоит использовать сетевые фильтры или UPS, имеющие в своем составе варисторы. Стоимость такой защиты оправдана значительным снижением возможного ущерба, который может появится в случае сгорания источника питания, питающего дорогостоящий компьютер.

В некоторых случаях защита от всплесков напряжения/тока, обеспечивающаяся варисторами и термисторами, не срабатывает. Это может происходит в случае неисправности варистора/термистора, а также если такой элемент нагрет и производится его включение расчете на его состояние при обычной температуре. Ситуация с медленным остыванием защитных варисторов (термисторов) может возникнуть в случае слишком быстрого повторного включения работавшего блока питания.

Если термистор не успевает остыть после выключения БП, то в момент повторной подачи высокого напряжения защита, обеспечиваемая гашением энергии на его высоком сопротивлении, не обеспечивается. Это может привести к плачевным последствиям.

Нагретый варистор не поглощает энергию импульса, появляющегося в момент включения из-за заряда емкостей электролитических конденсаторов и накопления энергии в индуктивностях, что обычно приводит к пробою транзисторов в высоковольтной части БП.

Благодаря этому, импульс высокого напряжения, поступающий на защищаемое устройство, гасится на варисторе. При сильном нагреве варистора в нем могут произойти необратимые изменения, приводящие к пробою или обрыву.

Пример платы дешевого блока питания Green Vision GV-PS S400:

Если трещит (свистит, пищит, звенит) блок питания.

Треск (свист) блока питания может быть вызван разными причинами. В том числе некачественными индуктивными элементами или ёмкостями. Данный обзор расскажет о конкретном примере поиска и устранения такого шума. Метод устранения будет не совсем стандартный. У меня есть вот такой блок питания 12В 5А:

Всё бы ничего, если бы не его крайне неприятный шум в виде треска-писка при отсутствующей или малой нагрузке.

Терминологию шума: треск, писк, свист, звон и т.д. оставлю людям, имеющим специальное акустическое образование, а я просто попробую устранить этот шум. Чуть ниже будет демонстрация этого звука.

Но для начала нужно разобрать БП. Собран он безо всяких щелей и люфтов, видимо заклеен. Попытки прогреть его феном и разъединить половинки ни к чему не привели.

Следующая попытка была рассоединить его грубой силой, поскольку всё-таки несколько совсем небольших щелей в половинках корпуса я нашёл. И о чудо, он оказался на защёлках и разобрался дальше без особых проблем. Корпус имеет по три защёлки на каждой длинной стороне. На коротких сторонах защёлок нет, но на одной есть направляющие:

Сразу напомню, перед любыми дальнейшими манипуляциями, обязательно разрядите большой высоковольтный конденсатор. Иначе он разрядится в вас.

Это может быть неприятно, больно, иногда смертельно:

Даже если БП лежал некоторое время выключенным, всё равно конденсатор длительное время может сохранять заряд.

Кроме того, пройдя через вас, ток может повредить другие, низковольтные элементы блока питания. Вы не должны с ними так поступать, они этого не заслужили.

На самом деле, метод в предыдущем видео плохой.

Не делайте так никогда. Во-первых, от дуги может повредиться проводник, и если внимательно посмотреть, в видео это видно. А во-вторых, не забываем про диэлектрическую абсорбцию — если конденсатор разрядить кратковременным замыканием, то через некоторое время на нём опять окажется заряд. Не полный, конечно, но тряхнуть или выбить что-то вокруг через вас вполне может. Поэтому правильнее разряжать конденсатор через резистор, например, 1 кОм в течение секунд 10-20, ну а потом уже можно и коротнуть, для надёжности.

Итак, после всех мер предосторожности, рассмотрим БП повнимательнее, может его проще выкинуть и купить получше (а как определить, что новый будет получше?)?

Корпус контроллера в длину всего 3 мм!:

Визуально, вроде как блок питания сделан не плохо. На входе есть предохранитель, термистор, варистор:

Есть пропилы на плате в высоковольтных частях, где дорожки близко друг к другу.

Есть целых 4 фильтрующих дросселя. Очень ёмкий, для мощности этого блока питания, входной конденсатор. При выключении из розетки, выходное напряжение 12В без нагрузки, ну точнее с нагрузкой в виде индикаторного светодиода, держится 1 минуту и 15 секунд! Ну и свистит в это время, т.е. идёт процесс преобразования.

Плата выглядит вполне пристойно. Не выглядит бывшей в употреблении или восстановленной, как это часто бывает с подобными БП, и усыпана большим количеством (видимо очень важных) дискретных элементов.

Выходная диодная сборка MBRF3065CT вообще с невероятным запасом — 30А, 65 В. Диоды включены параллельно. Правда, я до сих пор не могу разобраться, в даташитах на такие сборки приводятся характеристики максимального тока для каждого диода или суммарно на всю сборку? Чёткого указания на это нет, может кто в курсе?

Нарисовал схему входа и выхода. Деталей на фильтрующие элементы не пожалели:

Ну ладно, раз в общем БП сделан неплохо, будем его ремонтировать.

А для этого нам нужно найти источник шума.

Просто водить ухом над БП бесполезно. Точную локацию источника звука так определить не получится. Но есть другой способ. Берём токоНЕпроводящую палочку (сухую пластиковую или деревянную) и тыкаем во все ёмкости и индуктивности. И если, при касании очередного элемента звук изменится, то это оно. В моём случае это был конденсатор снаббера (видео со звуком):

Вот он же, в центре:

Самый простой способ решения проблемы — заменить его. А если у вас нет такого? Ну тогда купить и заменить. А если новый будет такой же свистяще-трещащий? Ну тогда покупать нужно у проверенного поставщика и хорошего производителя. А если я не знаю где есть проверенные поставщики и какие производители хорошие, особенно если я не занимаюсь такими вещами на постоянной основе и мне нужен всего 1 (один) такой конденсатор? Ну, блин, не знаю тогда. Давайте тогда отремонтируем этот. Ремонт керамического конденсатора? Ого это круто. На самом деле мы поступим, как всегда поступают с шумом — мы его просто изолируем.

Берём несколько капель эпоксидки, смешиваем с мелом. В данном случае мел выполняет несколько важных функций. Он увеличивает густоту эпоксидки, чтобы она меньше стекала с объекта. Он увеличивает твёрдость застывшего пластика, что снижает амплитуду вибрации керамики конденсатора и уменьшает шум. Он выступает в качестве антипирена (вещества препятствующего горению) для эпоксидки. Ну и эпоксидка с мелом становится несколько более теплопроводной. Как-то я проводил такие опыты, пытаясь сделать на её основе теплопроводный клей, но это уже другая история.

Итак, покрываем наш музыкальный конденсатор этой смесью, и ждём когда застынет. Я брал 5-и минутную эпоксидку и всё случилось быстро. Поэтому сразу проверяем результат (БП включен в сеть, видео со звуком):

Абсолютная тишина! Делал я это первый раз на основе лишь предположения, что это должно помочь. Удивительно, но результат оказался даже лучше, чем я мог представить.

Мало того, при определённой сноровке и наличие места вокруг конденсатора, при таком методе его даже выпаивать не придётся — можно обмазать/залить прямо на плате.

Предполагаю, что на этом месте некоторые читатели подумали, господи, опять колхоз, не мог пойти купить нормальных конденсаторов, они же копейки стоят ну и бла бла бла.

Ну, во-первых, как я уже говорил, понять хорошие они или плохие заранее невозможно. Ну я так точно гадать по фото не умею. И проверенных мест, где продаются исключительно фирменные и гарантированно не шумящие, у меня тоже нет.

Но я всё-таки пошёл и купил других конденсаторов. Вот они вместе. Коричневый — шумный родной из БП, синий — из магазина:

Ну и что вы думаете? Синий действительно гораздо тише коричневого. Но не абсолютно тихий. Небольшой, но вполне слышимый свист от него всё же есть. И он тоже меняется при попытке потыкать конденсатор палочкой. А вот коричневый, залитый эпоксидкой, получился ощутимо тише синего и тыканье в него палочкой ничего не меняет.

В результате, окончательно я установил родной, залитый эпоксидкой:

Да, видончик, конечно, у него так себе. Зато работает как надо!

Впрочем уже на второй попытке у меня получился результат почти не хуже фирменного:

Как я уже говорил, это всё была импровизация. Ни до, ни после, я таких экспериментов не ставил. Вполне возможно, убрать звук можно было просто залив конденсатор силиконовым герметиком и не париться с разведением эпоксидки. Но эти эксперименты я уже оставляю вам, буду благодарен, если вы их проведёте или проводили ранее и напишите об этом в комментариях. На этом у меня всё, всем спасибо!

Как определить исправность варисторов и термисторов?

На схемах блоков питания варисторы и термисторы имеют похожие обозначения в виде резистора с корпусом, перечеркнутым «клюшкой». Варисторы обычно стоят параллельно источнику тока и маркируются обозначением VR:

Термисторы обозначаются похоже:

Термисторы обычно включаются последовательно с нагрузкой, их сопротивление значительно меньше варисторов.

Проверка исправности варистора/термистора состоит в проведении двух действий:

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]