220В или 380В: какое напряжение нужно при подключении к электросетям частного дома? И что делать, если его не дают?


Что такое фаза в электричестве — определение понятия

Фаза в электричестве – это разговорное название провода, находящегося под напряжением относительно другого, который называют нуль. Это название произошло из-за того что вырабатываемый на подстанциях ток, подающийся в дома, является переменным, то есть ЭДС, создаваемые на подстанциях, имеют одну и ту же частоту (для России и стран СНГ она составляет 50 Гц), но сдвинуты относительно друг друга во времени на определённый фазовый угол. В дома обычно подаются все три фазы и нет никакого значения, к какой фазе подключена ваша квартира.

Рисунок 1. Электрика и электричество – схематическое изображение фазы, нуля и земли

На рис. 1 схематично нарисована схема проведения электрического тока в квартиру от общей системы. Буквами $L1$, $L2$, $L3$ обозначены 1-3 фазы, а буквой $N$ – нулевой провод.

На рис. 2 показано схематическое подключение тока к квартире от трасформатора, буквой $L_T$ обозначена фаза на трансформаторе, буквой $L$ – фаза в квартире, а буква $R_H$ – это подключенный электроприбор, обладающий некоторым сопротивлением $R_H$.

От трансформатора идёт 2 провода, один – так называемый фазовый провод с напряжением, а другой – нулевой провод, от которого отведено заземление, осуществляемое помещением контакта в землю. Существуют и другие источники заземления помимо собственно земли, на данных рисунках заземление обозначено буквами $Змл$.

На рис. 3 изображён случай, когда нулевой заземлённый провод не проведён в квартиру от подстанции, а заземлён непосредственно в квартире. Напряжение $L_T$ между нулём и фазой будет одинаково для рисунков 2 и 3, однако, не рекомендуется заземлять напряжение от трансформатора непосредственно в квартире.

Электрический счетчик

При любой схеме подключения необходим прибор учета расхода электроэнергии. 3-фазный счетчик может подключаться непосредственно к сети (прямое включение) или через трансформатор напряжения (полукосвенное), где показания прибора умножаются на коэффициент.

Важно соблюдать порядок подключения, где нечетные номера – это питание, а четные – нагрузка. Цвет проводов указывается в описании, а схема размещается на задней крышке прибора. Вход и соответствующий выход 3-фазного счетчика обозначаются одним цветом. Наиболее распространен порядок присоединения, когда сначала идут фазы, а последний провод – ноль.

3-фазный счетчик прямого включения для дома обычно рассчитан на мощность до 60 кВт.

Перед выбором многотарифной модели следует согласовать вопрос с энергоснабжающей компанией. Современные устройства с тарификаторами дают возможность подсчитывать плату за электроэнергию в зависимости от времени суток, регистрировать и записывать значения мощности во времени.

Температурные показатели приборов выбираются как можно шире. В среднем они составляют от -20 до +50 °С. Срок эксплуатации приборов достигает 40 лет с межповерочным интервалом 5-10 лет.

Счетчик подключается после вводного трех- или четырехполюсного автоматического выключателя.

Принцип работы сети переменного тока

Чтобы понять, что такое фаза в электричестве, нужно представлять особенности переменного тока. От постоянного он отличается периодическими изменениями, как по значению, так и по направлению. Его характеристики – напряжение в данный момент времени и частота (отношение числа циклов к единице времени). Переменный ток находится в розетках и прямых подключениях к электрическому щиту.

Однофазный ток

Он направляется от распределительного щитка по двум проводам (фазному и нулевому), между которыми находится 220-вольтное напряжение. В электричестве фаза – это провод, по которому электроток направляется к розетке или прибору. Что такое в электричестве ноль? Это, в свою очередь, кабель, идущий от розетки, по которому ток направляется обратно.

Иногда вопросом, что такое ноль, интересуются в контексте заземления. Физически это разные провода, хотя их потенциалы совпадают. Однофазный ток можно подвести к потребителю как двумя проводами (без заземления), так и тремя (с ним). Заземление производится для отвода утечки, защиты жильцов от удара током и приборов – от перегрузок.

Двухфазный ток

Это сочетание двух однофазных, смещенных относительно друг друга на 90 °. Конструктивно это выглядит как сочетание двух проводов-фаз (с указанным сдвигом) и двух нулевых.

Трехфазный ток

Здесь конструкция состоит уже из трех фаз тока, каждая из последующих смещена относительно предыдущей на 120 °. По жилым домам такой ток распределяют четырьмя проводами (три фазы и ноль) либо пятью (указанные плюс заземление). После прохождения через распределительный щит розетки в квартире им питают через одну фазу и ноль.

Особенности подключения питания к частному дому

Многие считают, что трехфазная сеть в доме повышает потребляемую мощность. На самом деле лимит устанавливается электроснабжающей организацией и определяется факторами:

  • возможностями поставщика;
  • количеством потребителей;
  • состоянием линии и оборудования.

Для предупреждения скачков напряжения и перекоса фаз их следует нагружать равномерно. Расчет трехфазной системы получается примерным, поскольку невозможно точно определить, какие приборы в данный момент будут подключены. Наличие импульсных приборов в настоящее время приводит к повышенному энергопотреблению при их пуске.

Распределительный электрощит при трехфазном подключении берется больших размеров, чем при однофазном питании. Возможны варианты с установкой небольшого вводного щитка, а остальных — из пластика на каждую фазу и на надворные постройки.

Подключение к магистрали реализуется по подземному способу и по воздушной линии. Предпочтение отдают последней благодаря небольшому объему работ, низкой стоимости подключения и удобству ремонта.

Сейчас воздушное подключение удобно делать с помощью самонесущего изолированного провода (СИП). Минимальное сечение алюминиевой жилы составляет 16 мм2, чего с большим запасом хватит для частного дома.

СИП крепится на опорах и стене дома с помощью анкерных кронштейнов с зажимами. Соединение с главной воздушной линией и кабелем ввода в электрощит дома производится ответвительными прокалывающими зажимами. Кабель берется с негорючей изоляцией (ВВГнг) и проводится через металлическую трубу, вставленную в стену.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки. Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Однофазная двухпроводная сеть 220В

К такой сети относится устаревший тип проводки, где в качестве жил используются алюминиевые провода в единой белой оплетке, в народе «лапша». Одна жила электрического провода – фазный проводник, вторая жила — нулевой. Однофазная двухпроводная сеть используется для обычных бытовых нужд: простых розеток и выключателей.

Проблема при монтаже одноцветной проводки заключается в затруднительном определении фазного и нулевого проводов. Наличие дополнительного измерительного оборудования поможет справиться с задачей, можно использовать мультиметр или специальную отвертку с индикатором, пробник, тестер, «прозвонку».

Проектирование однофазной двухпроводной сети разрешено ГОСТом для помещений с небольшой нагрузкой на электрическую сеть и невысокими требованиями к безопасности. В таких случаях применяют два одножильных провода или один двухжильный с жилами разных цветов.

В случае использования цельного провода одна жила имеет коричневый цвет, другая синий или голубой. Согласно общепринятой маркировке коричневая жила – это фаза, а синяя — нулевой проводник, строго не рекомендуется этот порядок нарушать. На практике встречаются фазные провода отличных от коричневого цветов: черный, серый, красный, бирюзовый, белый, розовый, оранжевый, но не синий.

Применение двух независимых одножильных проводов также требует маркировки. Можно использовать цветной по всей длине провод, например, синий — для нуля, красный — для фазы. Допустимо маркировать одинаковые по цвету провода изолентой или термоусадочными трубками разных цветов, располагая маркировку с обоих концов каждой жилы.

Применение трубки предполагает не обматывание концов, а надевание ее на провод и воздействие горячим воздухом с целью фиксации термоусадки на проводе. Для домашнего использования можно использовать любые цвета маркировочных материалов, доступные и понятные монтажнику проводки.

Фаза и ноль: их значение в сети питания

Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».

Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).

Данная модель прокладки проводов пользуются во всех возводимых ныне домах. Она называется — система «TN-S». Согласно этой схеме к распределительному оборудованию дома подходят три кабеля фазы и два указанных нуля.

В домах, на предприятиях и зданиях старой застройки зачастую нет «РЕ»-проводника и поэтому, схема получается не пятипроводной, а четырех (она обозначается как «TN-C»).

Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.

Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.

Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.

Данная схема соединения отработана годами. Она подтвердила свое право на использование тем, что признана оптимальной из всех существующих. Однако, в ней, как и в любом приборе, механизме или устройстве, периодически могут появляться всевозможные поломки и неисправности. Как правило, они бывают связаны с плохим качеством электросоединения или же полным обрывом кабелей в каких-либо местах схемы.

Что происходит в нуле и фазе при обрыве провода.

Обрывы на линии достаточно часто возникают по вине мастеров – они забывают подключить фазу либо ноль. Такие поломки достаточно распространены. Так же довольно часто происходит процесс отгорания нуля на подъездном щитке например, из-за высокой нагрузки в системе.

Если происходит порыв на любом участке цепи, то прекращает функционировать вся цепь, т.к. она размыкается. В таких ситуациях совершенно не важно, какой провод поврежден – фаза или ноль. То же самое случается и при порыве между распределительным щитом многоэтажки и щитком в подъезде. При таком порыве все потребители, которые были подключены к данному щитку, будут без электроэнергии.

Все ситуации, которые мы попытались описать выше, имеют место быть. Они могут показаться сложными, но не несут никакой опасности для человечества. Ведь обрыв произошел только одного провода, поэтому это совершенно не опасно.

Очень тревожная ситуация – когда пропадает контакт между контуром заземления на подстанции и средним пунктом, к которому поступает все напряжение внутридомового щитка.

Именно в таком варианте электрический ток движется по контурам AB, BC, CA. Совокупное напряжение этих контуров 380В. Именно по этой причине и возникает достаточно опасная ситуация – один щиток может вообще не иметь напряжения, потому что хозяин отключит все электроприборы, а на другом образуется очень высокий уровень напряжения, около 380В. Это может способствовать выходу из строя многих приборов, потому что для них необходимо напряжение в 220В.

Естественно, появление данной ситуации можно избежать. Имеется масса недорогого/дорогостоящего оборудования, которое защитит вашу технику от скачков напряжения. К такому оборудованию относится и стабилизатор напряжения. Различают такие виды стабилизаторов:

  • Однофазный;
  • Трехфазный.

Отличия рассматриваемых напряжений

Однофазное:

  1. Подаётся к подключенным устройствам по одному единственному проводу. Существенно упрощается расчёт и проектирование схем разводки.
  2. Имеет только одно номинальное значение.
  3. Не может обеспечить эффективной работы мощных агрегатов и машин (десятки киловатт и более) ввиду подачи питания по одному каналу.
  4. Возникновение аварийных ситуаций (выход техники из строя, пожар и т. п.) из-за чрезмерно большого его значения определяется в основном внешними факторами (авария на трансформаторе, удар молнии и т. п.).
  5. Требуется более простая и дешёвая аппаратура для обеспечения безопасности эксплуатации на случай возникновения перегрузок.
  6. Предназначено преимущественно для бытового использования при сравнительно небольших предельных уровнях потребляемой мощности.
  7. При обрыве нулевого провода электроприборы просто перестанут функционировать в связи с размыканием электрической цепи. При этом следует помнить, что вся разводка сети будет оставаться под рабочим напряжением, а в случае заземления электроприборов на рабочий ноль и их корпуса тоже.
  8. Большее падение его величины при подключении чего-либо. Причина – все потребители «висят» на одной ветке питания.

Трёхфазное:

  1. Подаётся к потребителям по 3 проводам. Это усложняет разработку планов их подведения к точкам подключения электроприборов.
  2. Может иметь два номинальных значения, зависящих от схемы подключения. Это существенно расширяет номенклатуру подключаемых устройств.
  3. Даёт возможность подключения более мощных устройств за счёт наличия 3-х питающих линий.
  4. Создаёт значительно большие риски в случае обрыва нулевого провода, что может привести к перекосу фаз. В этом случае фаза, к которой подключено много потребителей, будет перегружена и напряжение в ней упадёт, а в менее нагруженных фазах произойдёт его рост (возможно на десятки процентов). Это может привести к частичному или полному выходу электроприборов из строя и/или возникновению возгораний.
  5. Для обеспечения безопасной эксплуатации подключенных устройств необходима более сложная аппаратура, предохраняющая от аварийных ситуаций.
  6. Его значительное увеличение вследствие аварии на подстанции, скорее всего не приведёт к выходу из строя электроприборов конечного пользователя ввиду наличия дополнительных средств защиты (см. пункты 4 и 5).
  7. Используется в основном для запитывания промышленного оборудования или распределительных щитков в многоквартирных домах.
  8. Меньшее падение его величины на каждом проводе за счёт распределения потребителей по 3-м питающим веткам.

Устройство бытовой электропроводки

Стандартная схема электрической проводки содержит следующие элементы:

  • многотарифный электросчетчик;
  • выключатель-автомат с номинальным значением тока 25 А;
  • механизм отключения, предохраняющий от короткого замыкания и перегрузок сети;
  • дифференциальный автоматический выключатель с порогом срабатывания 30 мА (ток утечки), он защищает розетки;
  • шкаф для монтажа с шинами (ноль и заземление) и дощечками для установки выключателей;
  • несколько автоматов для освещения с номинальным значением тока 10 А;
  • кабели с коробками распределения, направляющиеся к розеткам и приборам, освещающим помещения.

Часто владельцы квартир интересуются, фаза это плюс или минус, и в чем разница между нолем и землей. Поскольку электрическая фаза обладает переменным потенциалом, то показатель оного в проводе фазы становится то положительным, то отрицательным. Посему утверждать, что фаза это минус (либо плюс), будет некорректно – эти понятия лежат в разных плоскостях.

Теперь о том, чем нуль отличается от земли. Отличие в том, что через нулевой провод проходит ток и размыкается автоматами (к примеру, вводным). Для заземления в многоквартирном доме нужно подсоединиться к расположенной в стояке жиле, предназначенной специально для этого. Любое другое место, в том числе и щитковый корпус, применять для заземления строго запрещено – это грозит серьезными проблемами для здоровья жильцов.

Однофазный и трёхфазный переменный ток. Определения

Переменным током, называют ток, изменение которого по значению и направлению повторяется периодически через равные промежутки времени.

Эл.ток, сила которого изменяется по синусоидальному закону во времени и меняет свой знак (направление) дважды за период времени, называется переменным током.

Переменный ток бывает однофазным и трёхфазным. Однофазный ток передаётся по двум проводам (фаза и ноль). Для передачи трёхфазного тока требуется три провода (по проводу на каждую фазу).

Три синусоидальных (переменных) напряжения одной частоты и амплитуды, сдвинутые по фазе на 120 градусов, образуют трёхфазную сеть.

Трёхфазные сети получили широкое распространение: питание трёхфазным током экономит провода; трёхфазные генераторы, электродвигатели и трансформаторы дешевле, легче, экономичнее.

Широкое применение переменного тока в различных областях техники объясняется легкостью его получения и преобразования, а также простотой устройства генераторов и двигателей переменного тока, надёжностью их работы и удобством эксплуатации. Современная энергетика требует передачи энергии на дальние расстояния при помощи эл.тока. При такой передаче требуется возможность простого и эффективного преобразования тока. Такое преобразование возможно лишь с применением трансформаторов, работающих только на переменном токе. Большим стимулом для развития электротехнических устройств переменного тока, является возможность получения источников элэнергии большой мощности.

Современные генераторы тепловых и гидроэлектростанций имеют мощность 100 – 1500 МВт. К наиболее простым и дешёвым эл.им двигателям относятся асинхронные двигатели переменного тока, в которых отсутствуют движущиеся эл.контакты. Для передачи переменного тока на дальние расстояния требуются провода меньшего сечения, чем для постоянного тока.

Основные параметры переменного тока. Период, частота

Основными параметрами переменного тока служат следующие величины:

  • мгновенные значения тока и напряжения — их значения в любой момент времени;
  • амплитудные значения тока и напряжения – максимальные значения мгновенных величин;
  • действующие значения тока и напряжения;
  • период – промежуток времени, в течение которого ток совершает полное колебание и принимает прежнее по величине и знаку мгновенное значение, период выражается секундах (с), миллисекундах (мс) и микросекундах (мкс).
  • частота – величина обратная периоду f = 1/T где Т – период;

Единицей частоты является герц (Гц), f = 1/с = 1гц.

Частота измеряется также в килогерцах(кГц),мегагерцах(МГц) и гигагерцах(ГГц).

Промышленной частотой электросети в России и в большинстве стран мира принята частота 50 Гц (в США – 60 Гц). Причина такого выбора простая: понижение частоты неприемлемо, так как уже при частоте тока 40Гц лампы накаливания заметно для глаза мигают; повышение частоты нежелательно, так как повышенная частота отрицательно влияет на передачу энергии по проводам и работу многих электротехнических устройств.

Сеть постоянного тока

Сеть постоянного тока отличается от сети переменного тока тем, что в ней присутствуют два проводника: плюс и минус. Жила плюсового проводника маркируется красным цветом, а жила минусового проводника – синим.

Практика цветового разделения проводов знакома профессионалам и любителям своего дела, активно применяется в электрике, но все же не стоит слепо доверять маркировке. Подстраховка измерительным прибором – обдуманный и взвешенный ход при монтаже электрических сетей, не стоит им пренебрегать.

Если вы электрик, нам полезно ваше мнение о статье. Напишите пожалуйста свой комментарий ниже.

Двухфазные электрические сети

применялись в начале 20-го века в электрических распределительных сетях переменного тока. В них применялись два контура, напряжения в которых были сдвинуты по фазе друг относительно друга на 90 градусов. Обычно в контурах использовались 4 линии — по две на каждую фазу. Реже применялся один общий провод, имевший больший диаметр, чем два других провода. Некоторые из наиболее ранних двухфазных генераторов имели по два полноценных ротора с обмотками, физически повёрнутыми на 90 градусов.

Впервые идеи использования двухфазного тока для создания вращающего момента были высказаны Домиником Араго в 1827 году . Практическое применение было описано Николой Тесла в его патентах от 1888 года , примерно тогда же им была разработана конструкция соответствующего электродвигателя . Далее эти патенты были проданы компании Вестингауза , которая начала развивать двухфазные сети с США. Позднее эти сети были вытеснены трёхфазными, теория которых разрабатывалась русским инженером Михаилом Осиповичем Доливо-Добровольским , работавшим в Германии в компании AEG . Однако, благодаря тому, что в патентах Теслы содержались общие идеи использования многофазных цепей, компании Вестингауза некоторое время удавалось сдерживать их развитие с помощью патентных судебных процессов .

Преимуществом двухфазных сетей было то, что они допускали простой, мягкий пуск электрических двигателей. На заре электротехники эти сети с двумя отдельными фазами были более просты для анализа и разработки. Тогда ещё не был создан метод симметричных составляющих (он был изобретён в 1918 году), который впоследствии дал инженерам удобный математический инструментарий для анализа несимметричных режимов нагрузки многофазных электрических систем.

Двухфазные контуры обычно используют две отдельные пары токонесущих проводников. Могут использоваться и три проводника, однако по общему проводу течёт векторная сумма фазных токов, и поэтому общий провод должен иметь больший диаметр. В отличие от этого, в трёхфазных сетях при симметричной нагрузке векторная сумма фазных токов равна нулю, и поэтому в этих сетях возможно использовать три линии одинакового диаметра. Для электрических распределительных сетей требование трёх проводящих линий лучше, чем требование четырёх, поскольку это даёт значительную экономию в стоимости проводящих линий и в расходах по их установке.

Двухфазные электрические сети

применялись в начале XX века в электрических распределительных сетях переменного тока. В них применялись два контура, напряжения в которых были сдвинуты по фазе друг относительно друга на (90 электрических градусов). Обычно в контурах использовались четыре линии — по две на каждую фазу. Реже применялся один общий провод, имевший больший диаметр, чем два других провода. Некоторые из наиболее ранних двухфазных генераторов имели по два полноценных ротора с обмотками, физически повёрнутыми на 90 градусов.

Впервые идеи использования двухфазного тока для создания вращающего момента были высказаны Домиником Араго в 1827 году . Практическое применение было описано Николой Тесла в его патентах от 1888 года , примерно тогда же им была разработана конструкция двухфазного электродвигателя . Далее эти патенты были проданы компании Вестингауза , которая начала развивать двухфазные сети с США. Позднее эти сети были вытеснены трёхфазными, теория которых разрабатывалась русским инженером Михаилом Осиповичем Доливо-Добровольским , работавшим в Германии в компании AEG . Однако, благодаря тому, что в патентах Теслы содержались общие идеи использования многофазных цепей, компании Вестингауза некоторое время удавалось сдерживать их развитие с помощью патентных судебных процессов .

Преимуществом двухфазных сетей было то, что они допускали простой, мягкий пуск электрических двигателей. На заре электротехники эти сети с двумя отдельными фазами были более просты для анализа и разработки. Тогда ещё не был создан метод симметричных составляющих (он был изобретён в 1918 году), который впоследствии дал инженерам удобный математический инструментарий для анализа несимметричных режимов нагрузки многофазных электрических систем.

Схема трансформатора Скотта

Двухфазные контуры обычно используют две отдельные пары токонесущих проводников. Могут использоваться и три проводника, однако по общему проводу течёт векторная сумма фазных токов, и поэтому общий провод должен иметь больший диаметр. В отличие от этого, в трёхфазных сетях при симметричной нагрузке векторная сумма фазных токов равна нулю, и поэтому в этих сетях возможно использовать три линии одинакового диаметра. Для электрических распределительных сетей требование трёх проводящих линий лучше, чем требование четырёх, поскольку это даёт значительную экономию в стоимости проводящих линий и в расходах по их установке.

Двухфазное напряжение может быть получено от трёхфазного источника путём соединения однофазных трансформаторов по так называемой схеме Скотта. Симметричная нагрузка в такой трёхфазной системе в точности эквивалентна симметричной трёхфазной нагрузке.

В некоторых странах (например, в Японии) схему Скотта используют для питания железных дорог, электрифицированных по системе однофазного переменного тока промышленной частоты. В этом случае в контактной сети чередуются только две фазы, а не три. На двухпутных дорогах пути разных направлений могут на всём протяжении питаться каждый от своей фазы двухфазной сети, что позволяет избавиться от чередования фаз по ходу следования поезда и устройства нейтральных вставок (хотя это усложняет работу станций). В России такая система не получила распространения.

Однофазный переменный ток и его параметры

Переменный ток долгое время не находил практического применения. Это было связано с тем, что первые генераторы электрической энергии вырабатывали постоянный ток, который вполне удовлетворял технологическим процессам электрохимии, а двигатели постоянного тока обладают хорошими регулировочными характеристиками.

Однако по мере развития производства постоянный ток все менее стал удовлетворять возрастающим требованиям экономичного электроснабжения. Переменный ток дал возможность эффективного дробления электрической энергии и изменения величины напряжения с помощью трансформаторов. Появилась возможность производства электроэнергии на крупных электростанциях с последующим экономичным ее распределением потребителям, увеличился радиус электроснабжения.

В настоящее время центральное производство и распределение электрической энергии осуществляется в основном на переменном токе. Цепи с изменяющимися – переменными – токами по сравнению с цепями постоянного тока имеют ряд особенностей. Переменные токи и напряжения вызывают переменные электрические и магнитные поля. В результате изменения этих полей в цепях возникают явления самоиндукции и взаимной индукции, которые оказывают самое существенное влияние на процессы, протекающие в цепях, усложняя их анализ.

Переменным током (напряжением, ЭДС и т.д.)называется ток (напряжение, ЭДС и т.д.), изменяющийся во времени. Токи, значения которых повторяются через равные промежутки времени в одной и той же последовательности, называются периодическими,а наименьший промежуток времени, через который эти повторения наблюдаются, — периодом Т.

Основные параметры цепей однофазного переменного тока.

Однофазный переменный ток промышленной частоты имеет 50 периодов колебаний в секунду, или 50 Гц. Его применяют для питания небольших вентиляторов, электробытовых приборов, электроинструмента, при электросварке и для питания большинства осветительных приборов. Частота переменного тока, Гц:

f= 1/T = np/60,

где п— частота вращения генератора, минˉ 1 ; р— число пар полюсов генератора.

Мощность однофазного переменного тока:

активная, Вт, Ра = IUcosφ;

реактивная, вар, Q = IUsinφ;

кажущаяся, В А, S = IU =

Если в цепь переменного однофазного тока включено только активное сопротивление (например, нагревательные элементы или электрические лампы), то значение силы тока и мощности в каждый момент времени определяют по закону Ома:

I=U/R; Рa = IU = I²R=U²/R.

Коэффициент мощности в цепи с индуктивной нагрузкой

Cosφ= Рa/IU= Рa/S.

Основные понятия и величины, характеризующие электрические цепи

Понятия:

Электрической цепьюназывается совокуп­ность устройств, предназначаемых для прохождения электрического тока, электромагнитные процессы в ко­торых могут быть описаны с помощью понятий напря­жения и тока. В общем случае электрическая цепь со­стоит из источников и приемников электрической энергии и промежуточных звеньев (проводов, аппаратов), связы­вающих источники с приемниками.

Источниками электрической энергииявляются устройства (гальванические элементы, аккумуляторы, термоэлемен­ты, генераторы), в которых происхо­дит процесс преобразования химической, молекулярно-кинетической, тепловой, механической или другого вида энергии в электрическую.

Приемниками электрической энергии (нагрузкой),служат устройства (электрические лампы, электронагревательные приборы, электрические двига­тели, резисторы, конденсаторы, индуктивные катушки), в которых электрическая энер­гия превращается в световую, тепловую, механическую и др.

Величины:

Электрический ток и напряжение являются основны­ми величинами, характеризующими состояние электрических цепей.

Электрический токв проводниках представляет явление упорядоченного движения электрических зарядов. Под терми­ном «ток» понимают также интенсивность или силу тока, измеряемую количеством электрического зарядаq, прошед­шего через, поперечное сечение проводника в единицу вре­мени:

Следовательно, ток представляет собой скорость изменения заряда во времени.В СИ заряд выражается в кулонах (Кл), время—в секундах (с), ток — в амперах (А).

Ток как отношение двух скалярных величин является скалярной алгебраической величиной, знак которой зависит от направления движения зарядов одного знака, а именно условно принятого положительного заряда. Для однозначного опреде­ления знака тока за положительное направление достаточно произвольно выбрать одно из двух возможных направлений, которое отмечают стрелкой.

Если движение поло­жительного заряда происходит в направлении стрелки, а движение отрицательного заряда—навстречу ей, то ток поло­жителен. При изменении направления движения зарядов на противоположный ток будет отрицательным.

Задать однозначно ток в виде некоторой функции времени можно только после указания выбранного положительного направления тока. Поэтому перед началом анализа на всех участках цепи необходимо отметить положительные направления токов, выбор которых может быть произвольным.

Прохождение электрического тока или перенос зарядов в цепи связаны с преобра­зованием или потреблением энергии. Для определения энергии, затрачиваемой на перемещение заряда между двумя рассмат­риваемыми точками проводника, вводят новую величину—напряжение.

Напряжениемназывают количество энергии, затрачи­ваемой на перемещение единицы заряда из одной точки в другую:

, гдеw—энергия.

При измерении энергии в джоулях (Дж) и заряда в кулонах (Кл) напряжение выражают в вольтах (В).

Напряжение как отношение двух скалярных величин также является скалярной алгебраической величиной. Для однознач­ного определения знака напряжения между двумя выводами рассматриваемого участка цепи одному из выводов условно приписывают положительную полярность, которую отмечают либо стрелкой, направленной от вывода, либо знаками « + »,«—

Напряжение положительно, если его поляр­ность совпадает с выбранной; это означает, что потенциал вывода со знаком « + », из которого выходит стрелка, выше потенциала второго вывода.

Перед началом анализа должны быть указаны выбранные положительные полярности напряжений — только при этом условии возможно однозначное определение напряжений.

Хотя условно положительную полярность напряжения можно выбирать произвольно, обычно удобно выбирать ее согласованной с выбранным положительным направлением тока, когда стрелки для тока и напряжения совпадают или знак « + » полярности напряжения находится в хвосте стрелки, обозначающей положительное направление тока. При согласо­ванном выборе полярности, очевидно, достаточно ограничиться указанием только одной стрелки положительного направления тока.

Если возникает необходимость выбора положительной по­лярности напряжения, не согласованной с положительным направлением тока, то приходится указывать две встречно направленные стрелки: для тока и для напряжения. Это не очень удобно. Поэтому для обозначения условно положитель­ной полярности будем применять знаки «+.», « —» у выводов участка цепи.

Мощностьв электрической цепи, равная произведению напряжения на ток, также является алгебраической величиной. Знак ее определяется знаками напряжения и тока: при совпаде­нии этих знаков мощность положительна, что соответствует потреблению энергии в рассматриваемом участке цепи; при несовпадении знаков напряжения и тока мощность отрица­тельна, что означает отдачу ее из участка цепи (такой участок является источником энергии).

Получение переменного тока

Генерация тока основана на явлении электромагнитной индукции, которое открыл Майкл Фарадей. Суть его такова: в проводнике, находящемся в магнитном поле с изменяющимися характеристиками, возникает электродвижущая сила (ЭДС).

Под параметрами магнитного поля подразумевают:

  • плотность силовых линий;
  • угол их направления по отношению к проводнику.

Обеспечить изменение показателей магнитного поля можно несколькими способами:

  1. перемещать (вращать) проводник в поле постоянного магнита;
  2. вращать постоянный магнит вокруг проводника;
  3. поместить токопроводящий элемент в поле электромагнита (намотанный в виде катушки провод) с протекающим по нему переменным током.

В электрогенераторах применяют два первых метода, последний — в трансформаторах тока. Приведение в движение магнита или проводника требует затрат механической энергии. Она и преобразуется генератором в электрическую. Направление ЭДС определяется правилом правой руки.

При таком ее положении, когда силовые линии поля входят в ладонь, а отведенный в сторону большой палец совпадает с вектором движения проводника, прочие пальцы указывают на направление ЭДС. Простейший генератор переменного тока — вращающаяся между постоянными магнитами проволочная рамка, подключенная к электроцепи.

Контакт между подвижной рамкой и неподвижными проводящими элементами цепи — скользящий: на концах рамки прикрепляют кольца, на концах цепи — графитовые щетки (обладают низким коэффициентом трения), прижатые к этим кольцам.

Вращающуюся часть генератора или электродвигателя, в нашем примере это рамка, называют ротором. Неподвижную — статором.

Наводимая в рамке ЭДС определяется формулой: E = B*S*ω*sinα, где В — магнитная индукция, S — площадь рамки, ω — угловая частота, А — угол поворота рамки.

Изменяется только угол α, следовательно, график изменения ЭДС имеет вид синусоиды. Поскольку ток, в соответствии с законом Ома, равен отношению ЭДС к сопротивлению нагрузки (I = E/R), он также является синусоидальным.

Синусоидальность переменных ЭДС и тока означает, что они периодически меняют не только величину, но и направление на противоположное.

Принципиальные схемы генераторов переменного тока

Что показывает электрическое напряжение

Из школьного курса физики известно, что электрическое поле – это особый вид материи, который возникает вокруг электрических зарядов. Его можно наблюдать, создав заряд, например, с помощью трения – после расчесывания расческа начинает притягивать мелкие кусочки бумаги. Если заряженные частицы будут двигаться по проводнику – то в проводнике возникнет ток, а вокруг проводника – магнитное поле, с помощью которого можно будет совершать полезную работу. Это явление лежит в основе работы электродвигателей. И наоборот – если двигать магнит рядом с проводником (или внутри проводящей катушки) – то в проводнике возникнет электрический ток – на этом явлении основаны электрогенераторы.

Создать движение заряженных частиц по проводнику можно также с помощью особых химических реакций – на этом явлении базируются химические источники тока — батареи и аккумуляторы.

«Сила», с которой заряды будут двигаться по проводнику, называется электрическим напряжением, единица измерения — вольт. А количество этих зарядов, движущихся по проводнику – электрическим током, единица измерения — ампер.

Обычной батарейки достаточно для зажигания фонарика, но для совершения большой работы необходимо гораздо большее напряжение, которое создается специальными генераторами больших размеров.

Недостатки переменного тока

Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его. В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.

Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.

Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.

Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.

Электрификация железных дорог на переменном токе

Российский пассажирский электровоз переменного тока ЭП1П, выпускается на Новочеркасском электровозостроительном заводе.

В России и в республиках бывшего СССР около половины всех железных дорог электрифицировано на однофазном переменном токе частотой 50 Гц. Напряжение ~ 25 кВ (обычно до 27,5 кВ, с учётом потерь) подаётся на контактный провод, вторым (обратным) проводом служат рельсы. Также проводится электрификация по системе 2 × 25 кВ(два по двадцать пять киловольт), когда на отдельный питающий провод подаётся напряжение ~ 50 кВ (обычно до 55 кВ, с учётом потерь), а на контактный провод от автотрансформаторов подаётся половинное напряжение от 50 кВ (то есть 25 кВ). Электровозы и электропоезда переменного тока при работе на участках 2 × 25 кВ в переделке не нуждаются.

Проводится политика на дальнейшее расширение полигона тяги переменного тока как за счёт вновь электрифицируемых участков, так и за счёт перевода некоторых линий с постоянного тока на переменный ток. Переведены в 1990-е — 2000-е годы:

на Восточно-Сибирской железной дороге: участок Слюдянка — Иркутск — Зима; — на Октябрьской железной дороге: участок Лоухи — Мурманск; — на Приволжской железной дороге: Саратовский и Волгоградский железнодорожные узлы; — на Северо-Кавказской железной дороге: участки Минеральные Воды — Кисловодск и Бештау — Железноводск.

Следует отметить, что также выпускаются двухсистемные электровозы, способные работать как на переменном, так и на постоянном токе (см. ВЛ61Д, ВЛ82 и ВЛ82М, ЭП10, ЭП20).

Генерация и трансформация

Принцип генерации электричества прост. Если магнитное поле вращается вдоль стационарного набора катушек из витков проводника или, наоборот, катушка вращается вокруг стационарного магнитного поля, то благодаря явлению электромагнитной индукции на концах обмоток возникает разность потенциалов. С каждым изменением угла поворота в результате описанного кругового движения выходное напряжение также будет меняться как по величине, так и по направлению.

Описанный условный генератор при постоянной угловой скорости вращения вала производит синусоидальный AC с формой волны, ничем не отличающейся от поставляемого в бытовой сети. Реальные генераторы устроены значительно сложнее, но работают на том же принципах электромагнитной индукции.

Эти же законы помогают не только в производстве AC, но и в его передаче и распределении. Преобразования напряжения энергетическим компаниями невозможно осуществить без электрических машин, называемых трансформаторами

Вот почему это изобретение Теслы было так важно для революции в транспортировке электричества

Любой трансформатор состоит из следующих элементов:

  • первичной и вторичных обмоток;
  • сердечника.

Слово «первичная» применяется для обмотки, на которую подаётся электрическое напряжение, нуждающееся в трансформации. Индуцированное напряжение на вторичной катушке всегда равно приложенному на первичной, умноженному на соотношение витков вторичной к первичной. Трансформатор позволяет пошагово изменять напряжение.

Общая информация о трёхфазном напряжении

К потребителю подводятся 4 провода – 3 фазных и 1 нулевой. По 3-м передаётся переменный ток, параметры амплитуды которого смещены в каждой фазе на 1/3 цикла относительно 2-х других. В бытовых сетях напряжение на каждой фазе относительно нуля составляет 220 вольт (фазное), а между фазами – 380 вольт (линейное). Основное назначение нулевого провода – выравнивание фазных напряжений при неравномерной нагрузке на них.

Преимущества:

  1. Передаваемая мощность зависит от площади сечения кабеля.
  2. Возможность подключения оборудования промышленного типа.
  3. Переключение с одной фазы на другую в случае аварийной ситуации.
  4. Большая экономическая эффективность потребления электроэнергии.

Недостатки:

  • Более высокие расходы на оборудование.
  • Наличие более высокого напряжения (линейного).
  • Ограничение максимальной мощности нагрузки на одной фазе (относительно максимальной на всех вместе взятых).

Параметры

В характеристике переменного тока различают параметры основные и дополнительные.

  • частота;
  • период;
  • амплитуда;
  • действующее значение.

Дополнительные:

  • угловая частота;
  • фаза;
  • мгновенное значение.

Рассмотрим их подробно.

Частота

Буквенное обозначение — f, единица измерения — герц (Гц). Обозначает число полных циклов колебаний тока за секунду.

Частота переменного тока на выходе простейшего генератора определяется частотой вращения его ротора. В системе электроснабжения России и других стран бывшего СССР, используется ток частотой 50 Гц.

Кривые изменения синусоидального переменного тока при различной частоте

В ряде случаев частоту путем преобразования тока повышают. К примеру, в инверторных сварочных аппаратах и импульсных блоках питания — до 20 – 80 кГц. При такой частоте значительно уменьшаются габариты трансформатора и потери в нем. В некоторых устройствах частоту доводят до нескольких МГц.

Период

Обозначение — «Т», единица измерения — секунда. Период — продолжительность полного цикла колебаний тока. С частотой данный параметр связан следующей зависимостью:

Т = 1 / f.

Соответственно, в электросети период тока составляет 1 / 50 = 0,02 с = 20 мс.

Амплитуда

Максимальное значение силы тока или ЭДС, соответствует вершине полуволны. Обозначается, соответственно, Imи Um. За период, указанные величины достигают амплитудных значений дважды — с положительным и отрицательным знаком.

Действующее значение

Это постоянный ток, эквивалентный данному переменному по производимой работе. Постоянно меняющийся переменный ток неудобно использовать в расчетах, потому его заменяют действующим значением. Обозначается литерами I и U.

Для синусоидальных тока и ЭДС определяется по формуле:

I = 2^(-1/2) * Im = (1/1,414) * Im = 0,707 Im;

U = 2^(-1/2) * Um = 0.707 Um;

Напряжение 220 В бытовой электросети — это действующее значение. Амплитуда составляет 311 В. Аналогично, если говорят, что нагрузка потребляет ток в 5А, подразумевают действующее значение. Амплитуда тока составляет 7,07 А.

Угловая частота

Обозначает скорость изменения угла α в формуле расчета ЭДС. Соответствует угловой частоте вращения ротора. Поскольку за один период угол а меняется на 2π при стандартной частоте f = 50 Гц, угловая частота составит: ω = 2π * 50 = 100 π.

Фаза — характер изменения угла α относительно точки отсчета времени. Токи и ЭДС могут совпадать по фазе или иметь сдвиг. Последний измеряется в радианах, градусах или долях периода. При сдвиге по фазе на π (1/2 периода) говорят, что величины находятся в противофазе.

Сдвиг фаз переменного тока и напряжения

Преимущества трехфазного подключения

Отметим основные преимущества трехфазной сети.

ПреимуществаОписание
Универсальное использованиеК трехфазной сети можно подключать как однофазные нагрузки (220 В), так и электроустановки, работающие на линейном напряжении (380 В) – станков, сварочных аппаратов и другого специализированного электрооборудования большой мощности.
Подключение большого количества электроприборовБолее высокая выходная мощность – от 15 кВт, что позволяет подключить большое количество электроприборов.
Рациональное распределение фазДля большого хозяйства ввод в частный дом трехфазной сети более рационален. Так как появляется выбор распределения 3 фаз между помещениями или потребителями в доме. Например, для домашней электропроводки можно использовать одну фазу, для мощной бытовой техники – вторую, а для подсобных помещений – третью.
Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]