Полупроводниковые приборы применялись в радиотехнике еще до изобретения электронных ламп. Изобретатель радио А. С. Попов использовал для обнаружения электромагнитных волн вначале когерер (стеклянную трубку с металличеокими опилками), а затем контакт стальной иглы с угольным электродом.
Это был первый полупроводниковый диод — детектор. Позже были созданы детекторы с использованием естественных и искусственных кристаллических полупроводников (галена, цинкита, халькопирита и т. д.).
Такой детектор состоял из кристалла полупроводника, впаянного в чашечку-держатель, и стальной или вольфрамовой пружинки с заостренным концом (рис. 1). Положение острия на кристалле находили опытным путем, добиваясь наибольшей громкости передачи-радиостанции.
Рис. 1. Полупроводниковый диод — детектор.
В 1922 г. сотрудник Нижегородской радиолаборатории О. В. Лосев обнаружил замечательное явление: кристаллический детектор, оказывается, может генерировать и усиливать электрические колебания.
Это было настоящей сенсацией, но недостаточность научных познаний, отсутствие нужного экспериментального оборудования не позволили в то время глубоко исследовать суть процессов, происходящих в полупроводнике, и создать полупроводниковые приборы, способные конкурировать с электронной лампой.
Полупроводниковый диод
Полупроводниковые диоды обозначают символом, сохранившимся в общих чертах со времен первых радиоприемников (рис. 2,6).
Рис. 2. Обозначение и структура полупроводникового диода.
Вершина треугольника в этом символе указывает направление наибольшей проводимости (треугольник символизирует анод диода, а короткая черточка, перпендикулярная линиям-выводам,— его катод).
Этим же символом обозначают полупроводниковые выпрямители, состоящие, например, из нескольких последовательно, параллельно или смешанно соединенных диодов (выпрямительные столбы и т. п.).
Диодные мосты
Для питания радиоаппаратуры часто используют мостовые выпрямители. Начертание тажой схемы соединения диодов (квадрат, стороны которого образованы символами диодов) давно уже стало общепринятым, поэтому для обозначения таких выпрямителей стали иополикшать упрощенный символ — квадрат с символом одного диода внутри (рис. 3).
Рис. 3. Обозначение диодного моста.
В зависимости от значения выпрямленного напряжения каждое плечо моста может состоять из одного, двух и более диодов. Полярность выпрямленного напряжения на схемах не указивают так как ее однозначно определяет аимвол диода внутри квадрата.
Мосты конструктивно объединенные в одном корпусе, изображают отдельно показивая принадлежность к одному изделию в позиционном обозначены. Рядом с позиционным обозначением диодов, как и всех других полупроводниковых приборов, как правило, указывают их тип.
На основе символа диода построены условные обозначения полупроводниковых диодов с особыми свойствами. Для получения нужного символа используют специальные знаки, изВбражаемые либо на самом базовом символе, либо в непосредственной близости от него, а чтобы акцентировать внимание на некоторых из них, базовый символ помещают в круг — условное обозначение корпуса полупроводникового прибора.
Как отличить стабилитрон от диода с помощью мультиметра CAVR.ru
Рассказать в: Очень часто стабилитрон можно перепутать с диодом. Как отличить стабилитрон от диода? Рассмотрим простую схему приставки к мультиметру, с помощью которой можно не только отличить стабилитрон от диода, но и определить напряжение стабилизации стабилитрона (если оно не превышает 35В).Принципиальная схема приставки представляет собой dc-dc преобразователь с гальванической развязкой между входом и выходом.Генератор с широтно-импульсной модуляцией (ШИМ) выполнен на специализированной микросхеме МС34063. Для обеспечения гальванической развязки между источником питания и измерительной частью схемы, контрольное напряжение снимается с первичной обмотки трансформатора. Для этого предусмотрен выпрямитель на vd2. Величина выходного напряжения (точка стабилизации) устанавливается подбором резистора r3.На конденсаторе С4 выделяется напряжение около 40В. Стабилизатор тока А2 и проверяемый стабилитрон vdx образуют параметрический стабилизатор, а мультиметр, подключенный к выводам Х1 и Х2 измеряет напряжение на этом стабилитроне.При подключении анода к «+», а катода к «-» диода или несимметричного стабилитрона мультиметр покажет очень малое напряжение. Если подключить в обратной полярности (как vdx на схеме), то для диода показания мультиметра будут около 40В, а для стабилитрона напряжение стабилизации (при условии, что оно ниже 40В).Понятно, что для симметричного стабилитрона напряжение стабилизации будет индицироваться при любой полярности подключения.Трансформатор Т1 намотан на ферритовом торообразном сердечнике внешним диаметром 23 мм. Обмотка 1 содержит 20 витков, а обмотка 2 содержит 35 витков провода ПЭВ 0,43. Важно, укладывать при намотке виток к витку. Причем, первичная обмотка намотана на одной части кольца, а вторичка — на другой. Не рекомендуется накладывать одну обмотку на другую.При настройке, вместо стабилитрона vdx подключите резистор номиналом 10 кОм и подбором сопротивления r3 добейтесь того, чтобы на конденсаторе С4 установилось напряжение 40В.Печатная плата: Раздел: [Измерительная техника] Сохрани статью в: Оставь свой комментарий или вопрос:
Туннельные диоды
Знаком, напоминающим прямую скобку, обозначают катод туннельных диодов, (рис. 4,а). Их изготовляют из полупроводниковых материалов с очень большим содержанием примеси, в результате чего полупроводник превращается в полуметалл. Благодаря необычной форме вольт-амперной характеристики (на ней имеется участок отрицательного сопротивления) туннельные диоды используют для усиления и генерирования электрических сигналов и в переключающих устройствах. Важным достоинством этих диодов является то, что они могут работать на очень высоких частотах.
Рис. 4. Тунельный диод и его обозначение.
Разновидность туннельных диодов — обращенные диоды, у которых при малом напряжении на р-п переходе проводимость в обратном направлении больше, чем в прямом.
Используют такие диоды в обратном включении. В условном обозначении обращенного диода черточку-катод изображают с двумя штрихами, касающимися ее своей’серединой (рис. 4,6).
Как проверить электрический стабилизатор
Эта проверка выполняется довольно просто. Для этого необходимо взять следующие устройства:
- Две настольные лампы.
- Стабилизатор.
- Электрическую плитку.
- Удлинитель питания с 3-мя гнездами.
Порядок проверки:
- Вставить вилку удлинителя в домашнюю розетку.
- Стабилизатор подключить к удлинителю.
- К стабилизатору подключить настольную лампу на 60 Вт.
- Подключить электрическую плитку к удлинителю.
Если стабилизатор функционирует нормально, то работа плитки не повлияет на свет лампочки, а ели лампу подключить напрямую к удлинителю, то при включении плитки свет станет слабее. Это объясняется тем, что мощный потребитель в виде плитки значительно снижает напряжение и лампа, подключенная к сети до прибора, станет выдавать меньше света. Но лампа, питающаяся после стабилизатора напряжения, не будет реагировать на повышение нагрузки.
Поэтому может возникнуть такая ситуация, что при уменьшении напряжения на выходе стабилизатора напряжения мощности будет достаточно для вращения барабана, но недостаточно для нагревания воды. В этом случае необходимо выключить все лишние потребители и налить в машину, отдельно нагретую воду.
Стабилитроны
Прочное место в источниках питания, особенно низковольтных, завоевали полупроводниковые стабилитроны, работающие также на обратной ветви вольт-амперной характеристики.
Это плоскостные кремниевые диоды, изготовленные по особой технологии. При включении их в обратном направлении и определенном напряжении -на переходе последний «пробивается», и в дальнейшем, несмотря на увеличение тока через- переход напряжение на нем остался почти неизменным.
Рис. 5. Стабилитрон и его обозначение на схемах.
Благодари этому свойству стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений в стабилизаторах на транзисторах.
Для получения малых образцовых напряжений стабилитроны включают в прямом направлении, при этом напряжение стабилизации одного стабилитрона равно 0,7… 0,8 В. Такие же результаты получаются при включении в прямом направлении обычных кремниевых диодов.
Для стабилизации низких напряжений разработаны и широко применяются специальные полупроводниковые диоды — стабисторы. Отличие их от стабилитронов в том, что они работают на прямой ветви вольт-амперной характеристики, т. е. при включении в прямом (проводящем) направлении.
Чтобы показать на схеме стабилитрон, черточку-катод базового символа дополняют коротким штрихом, направленным в сторону символа анода (рис. 5,а). Следует отметить, что расположение штриха относительно символа анода должно быть неизменным независимо от положения условного обозначения стабилитрона на схеме.
Это в полной мере относится и к символу двух-анодного (двустороннего) стабилитрона (рис. 5,6), который можно включать в электрическую цепь в любом направлении (по сути, это два встречно включенных одинаковых стабилитрона).
Диоды и их разновидности
Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод — катод, один из которых обладает электропроводностью типа р, а другой — n.
Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький)
Внутреннее сопротивление диода (открытого) — величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.
Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др.
Диоды
Обозначаются на схемах вот так:
Треугольная часть является АНОД’ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются для защиты разных устройств от неправильной полярности включения и т. п.
Диодный мост представляет собой 4 диода, которые подключаются последовательно, причем два диода из этих четырех включены встречно, посмотрите на рисунки ниже.
Именно так и обозначается диодный мост, правда в некоторых схемах обозначают сокращенным вариантом:
Вывода ~ подключаются к трансформатору, на схеме это будет выглядеть вот так:
Диодный мост предназначен для преобразования, чаще говорят для выпрямления переменного тока в постоянный. Такое выпрямление называется двухполупериодным. Принцип работы диодного моста заключается в пропускании положительной полуволны переменного напряжения положительными диодами и обрезании отрицательной полуволны отрицательными диодами. Поэтому на выходе выпрямителя образуется немного пульсирующее положительное напряжение с постоянной величиной.
Для того, чтобы этих пульсаций не было, ставят электролитические конденсаторы. после добавления конденсатора напряжение немного увеличивается, но отвлекаться не будем, про конденсаторы можете почитать здесь.
Диодные мосты применяют для питания радиоаппаратуры, применяются в блоках питания и зарядных устройствах. Как уже говорил, диодный мост можно составить из четырех одинаковых диодов, но продаются и готовые диодные мосты, выглядят они вот так:
Диод Шоттки
Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами.
Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так:
Стабилитрон
Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений.
Стабилитроны на схемах обозначаются следующим образом:
Основным параметром стабилитронов является напряжение стабилизации, стабилитроны имеют различные напряжения стабилизации, например 3в, 5в, 8.2в, 12в, 18в и т.п.
Варикап
Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.
Тиристор
Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое.
Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод — используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92.
Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках.
Симистор
Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях.
Светодиод
Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.
Обозначение на схемах:
Подробнее про светодиоды можно почитать здесь.
Инфракрасный диод
Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне . Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды.
Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка.
Фотодиод
Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.
Фото диоды (а так же фоторезисторы, фототранзисторы) можно сравнить с солнечными батареями. Обозначаются на схемах так:
Варикапы
Электронно-дырочный переход, к которому приложено обратное напряжение, обладает свойствами конденсатора. При этом роль диэлектрика играет сам р-п переход, в котором свободных носителей зарядов мало, а роль обкладок — прилежащие слои полупроводника с электрическими зарядами разного -знака — электронами и дырками. Изменяя напряжение, приложенное к р-п переходу, можно изменять его толщину, а следовательно, и емкость между слоями полупроводника.
Рис. 6. Варикапы и их обозначение на принципиальных схемах.
Это явление использовано в специальных полупроводниковых приборах — варикапах [от английских слов vari(able) — переменный и cap(acitor) — конденсатор]. Варикапы широко применяют для настройки колебательных контуров, в устройствах автоматической подстройки частоты, а также в качестве частотных модуляторов в различных генераторах.
Условное графическое обозначение варикапа (см. рис. 6,а), наглядно отражает их суть: дне параллельные черточки воспринимаются как символ конденсаторе. Кик и конденсаторы переменной емкости, варикапы часто изготовляют и виде блоков (их называют матрицами) с общим катодом и раздельными анодами. Для примера на рис. 6,6 показано обозначение матрицы из двух варикапов, а на рис. 6,в — из трех.
Предисловие
Я живу в сельской местности, и у нас тут бывают периодические блэкауты, особенно в летний период. Минимальное время восстановления подачи — от 1 часа, среднее — 3-4 часа, если аварийная бригада ничем не занята. Поэтому когда делал ремонт несколько лет назад, сделал в квартире дополнительную разводку линий 12В для дежурного и аварийного освещения, а также питания USB зарядок, встроенных в розетки. Изначально в качестве резервируемого блока питания использовал БИРП на 6А, доставшийся за недорого, и две АКБ по 7а/ч в нем. Этого, в принципе, хватало на ожидание восстановления подачи электроснабжения. Но аппетиты пришли во время еды, добавилось светодиодное освещение, видеорегистратор, роутеры-шмоутеры… И это все уже пошло мимо БИРПа, что было неудобно. Да и к тому же AGM батареи очень неохотно отдавали большой ток, и хватать их стало чуть больше чем на год. А с учетом роста их стоимости становилось вообще грустно.
Тиристоры
На основе базового символа диода построены и условные обозначения тиристоров (от греческого thyra — дверь и английского (resi)stor — резистор). Это диоды, представляющие собой чередующиеся слои кремния с электропроводностью типов р и п. Таких слоев в тиристоре четыре, т. е. он имеет три р-п перехода (структура р-п-р-п).
Тиристоры нашли широкое применение в различных регуляторах переменного напряжения, в релаксационных генераторах, коммутирующих устройствах и т. д.
Рис. 7. Тиристор и его обозначение на принципиальных схемах.
Тиристоры с выводами только от крайних слоев структуры называют динисторимн и обозначают символом диода, перечеркнутым отрезком линии, паралельной черточке-катоду (рис 7,а). Такой же прием использован и при построении обозначения симметричного динистора (рис. 7, б), проводящего ток (после включения) в обоих направлениях.
Тиристоры с дополнительным (третьим) выводом (от одного из внутрених слоен структуры) называют тринисторами. Управление по катоду в обозначении этих приборов показывают ломаной линией, присоединенной к символу катода (рис. 7,в), по аноду — линией, продолжающей одну из сторон треугольника, символизирующего анод (рис. 7,г).
Условное обозначение симметричного (двунаправленного) трииистора получают из символа симметричного динистора добавлением третьего вывода (рис. 7,(5).
Как узнать, насколько стабилитрон без регулируемого блока питания
Это действительно сложнее, но в некоторых случаях под силу. Можно использовать зарядное устройство для сотового телефона, или , зарядное устройство для автомобильного аккумулятора. Но лучше всего, иметь в наличии несколько батареек, из них постепенно собираем батарею и меряем напряжение на них и сравниваем с напряжением на стабилитроне, бюджетный вариант, но рабочий. Главное условие, без мультиметра, не обойтись. Интересуйтесь подобными вопросами, и сложности станут под силу.
Сегодня мы научились способам, как определить номинал стабилитрона, у кого есть соображения поэтому и другим вопросам, пишите, все почитаем и обсудим.
Стабилизаторы напряжения
– это электронные приборы со сложным устройством, а значит, они имеют разные накладки в функционировании и возможные неисправности. Существуют разные казусы в их работе, которые связаны с наибольшими нагрузками, а есть и настоящие поломки. Эти понятия следует отличать, для чего существует несколько советов.
В первую очередь, рассмотрим, чем можно произвести качественную проверку работы этого устройства. Наиболее верным методом контроля качества устройства является обычный вольтметр, которым можно измерить напряжение в сети квартиры, а также напряжение на выходе прибора. В домашней розетке напряжение способно колебаться в интервале 170-240 вольт, а на выходе стабилизирующего прибора оно должно равняться .
Но простым методом проверки действия стабилизатора напряжения пользуются далеко не все, так как доверяют данным по индикатору. Но это доверие не всегда оправдывается, а иногда на китайских приборах цифровой индикатор просто подключен непосредственно к реле. В этом случае реле имеют достаточно большой шаг, и он всегда будет показывать 220 В. По факту на выходе будет совсем другое значение.
Фотодиоды
Основной частью фотодиода является переход, работающий при обратном смещении. В его корпусе имеется окошко, через которое освещается кристалл полупроводника. В отсутствие света ток через р-п переход очень мал — не превышает обратного тока обычного диода.
Рис. 8. Фотодиоды и их изображение на схемах.
При освещении кристалла обратное сопротивление перехода резко падает, ток через него растет. Чтобы показать такой полупроводниковый диод на схеме, базовый символ диода помещают в кружок, а рядом с ним (слева сверху, независимо от положения символа) изображают знак фотоэлектрического эффекта — две наклонные параллельные стрелки, направленные в сторону символа (рис. 8,а).
Подобным образом нетрудно построить и условнбе обозначение любого другого полупроводникового прибора, изменяющего свои свойства под действием оптического излучения. В качестве примера на рис. 8,6 показано обозначение фотодинистора.
Основные неисправности полупроводников
Диоды могут выходить из строя по разным причинам. Наиболее распространенные из них: протекание повышенного тока через схему, превышение максимального значения обратного напряжения и другие (например, тепловое или механическое воздействие). Основные неисправности этих полупроводников — пробой и обрыв. Обе неисправности можно выявить с помощью мультиметра. При пробое подключенный к элементу мультиметр в режиме измерения сопротивления показывает минимальное сопротивление порядка единиц Ом. При обрыве измерительный прибор в том же режиме покажет бесконечное сопротивление как при прямом, так и при обратном подключении.
Светодиоды и светодиодные индикаторы
Полупроводниковые диоды, излучающие свет при прохождении тока через р-n переход, называют светодио-дами. Включают такие диоды в прямом направлении. Условное графическое обозначение светодиода похоже на символ фотодиода и отличается от него тем, что стрелки, обозначающие оптическое излучение, помещены справа от кружка и направлены в противоположную сторону (рис. 9).
Рис. 9. Светодиоды и их изображение на схемах.
Для отображения цифр, букв и других знаков в низковольтной аппаратуре часто применяют светодиодные знаковые индикаторы, представляющие собой наборы светоизлучающих кристаллов, расположенных определенным образом и залитых прозрачной пластмассой.
Условных обозначений для подобных изделий стандарты ЕСКД не предусматривают, но на практике часто используют символы, подобные показанному на рис. 10 (символ семисегментного индикатора для отображения цифр и запятой).
Рис. 10. Обозначение светодиодных сегментных индикаторов.
Как видно, такое графическое обозначение наглядно отражает реальное расположение светоизлучающих ‘элементов (сегментов) в индикаторе, хотя и не лишено недостатка: оно не несет информации о полярности включения выводов индикатора в электрическую цепь (индикаторы выпускают как с общим для всех сегментов выводом анода, так и с общим выводом катода).
Однако особых затруднений это обычно не вызывает, поскольку подключение общего вывода индикатора (как, впрочем, и микросхем) оговаривают на схеме.
Выпрямление переменного тока.
Заменим источник питания постоянного тока, на источник переменного тока, близкого напряжения. Лампочка будет гореть, но более тускло, с небольшим мерцанием. Как известно, переменный ток частотой 50 гц. плавно меняет свое направление 50 раз в секунду. Диод пропустит полуволны направленные в его прямом направлении, и обрежет направленные в обратном. На рисунке ниже, отрицательные полуволны для наглядности, изображены синим цветом, а положительные — красным.
Таким образом на лампочке окажется выпрямленное напряжение, пульсирующее с два раза, меньшей частотой. Результируещее напряжение при этом, окажется несколько ниже номинального. Для более качественного выпрямления переменного тока применяется так называемая, мостовая схема, из четырех диодов в однофазной цепи.
В трехфазной цепи переменного тока, положительная ветвь диодного мост выглядит вот — так:
Для надежной работы при проектировании источников питания выбираются полупроводниковые диоды с 50 % запасом по параметрам Uобр.и. и Jпр. Это связано с тем, что при работе на предельных токах надежность выпрямителя снижается, из-за нагрева p-n переходов.