Смотри здесь авто из китаяя.

Чем опасен обрыв нулевого провода в электросети?


Привет, друзья. Сталкивались когда-нибудь с явлением «отгорание нуля»? Если нет, то вы счастливый человек. Но знать об этом, особенно электрикам, будет полезно. Поговорим о том, почему этот таинственный ноль имеет тенденцию отгорать, что происходит при этом и какая бывает защита от отгорания нуля? Для того чтобы понять это, немного вспомним физику.

Нашел в интернете хорошее видео по теме, коротко и ясно, если не любите читать, смотрите ниже. Итак, начнем.

Ноль

, для однофазной цепи, это название проводника, который не находиться под высоким потенциалом относительно земли.
Фаза
, это второй проводник , она имеет высокий потенциал переменного напряжения относительно земли. В России, чаще всего, это 220-230 Вольт. Ноль при этом не проявляет тенденции к отгоранию.

Основная загвоздка — все линии электропередачи, являются трехфазными. Рассмотрим традиционную схему «звезда»:

Здесь и появляется понятие «нулевой проводник».

В трех одинаковых нагрузках, переменный ток каждой фазы сдвинут по фазе на 1/3. В идеале, эти токи компенсируют друг друга. При такой нагрузке, в средней точке, векторная сумма токов равна нулю.

Получается, что через нулевой провод, подключенный к средней точке, ток не течет (он практически не нужен).

Незначительный ток на нулевом проводнике все же возникает. Это происходит, когда нагрузки на фазах не полностью компенсируют друг друга, тоесть разные. Прямое доказательство этому можно увидеть на практике, посмотрите на четырехжильные кабели для трехфазных цепей, нулевая жила вдвое меньшего сечения, чем фазные. Зачем тратить дефицитную медь, если тока в жиле практически нет? Имеется смысл…

При сосредоточенной нагрузке, в трехфазной цепи, ноль тоже не расположен к отгоранию.

Интересное начинается тогда, когда к трехфазной цепи начинают подключать однофазные нагрузки (многоквартирных домах, например). Каждая нагрузка представляет случайно выбранное устройство.

При использовании одной фазы из трехфазной цепи, их стараются распределить по мощности так, чтобы на каждую приходилась примерно одинаковая нагрузка.

Все понимают, что полного равенства при этом не достигнуть. Жители дома будут случайным образом включать, выключать электроприборы, поэтому нагрузка будет постоянно меняться. Полной компенсации токов в средней точке происходить не будет, но ток нулевого проводника обычно не достигает максимального значения, большего току в одной из фаз. Ситуация предсказуемая, отгорание нуля при этом бывает крайне редко.

Где бывает обрыв нуля

Принципиально важно, что обрыв нуля может быть в трехфазной, а может быть в однофазной сетях.

Там происходят совершенно разные процессы, подробно расскажу ниже. Если коротко, что при этом происходит:

При обрыве нуля в трехфазной сети появляется перекос фаз, что может привести к тому, что напряжение в квартирной розетке возрастёт до 380 В! Для человека, если правильно выполнено заземление, такая авария не опасна. А вот для наших электроприборов – последствия могут быть очень печальными! А также и для нашего жилища, поскольку может произойти пожар.

Местом обрыва нуля может быть этажный щиток, тогда в зоне риска находятся только квартиры на одной лестничной площадке. А может – вводное распределительное устройство (РУ) многоэтажного дома. Например, такое:

Вводное распределительное устройство (РУ) в подвале многоэтажного дома – в плохом состоянии

При обрыве нуля в однофазной сети последствия не такие печальные – напряжение в розетке будет нулевым, и электроприборы просто не будут работать. Однако вся электросеть (а при неправильно выполненном заземлении, и корпуса электроприборов!) будет находиться под потенциалом 220 В!

Для начала, чтобы нагнать страха –

Немного о механике

Разобравшись с вопросом о том, как правильно подключать автомат, остался не рассмотренным вопрос о том, как его установить. Если планируется новый щиток, то, скорее всего, придётся первым делом поставить туда DIN-рейку.

У каждого автоматического выключателя современной конструкции есть специальный зажим для крепления на этой самой рейке. Таким же креплением обладает проходной контакт, который используется для заземляющего проводника. Кстати говоря, защёлка такого заземляющего проводника бывает выполнена не как отдельный пластиковый элемент, а как пружинящая часть корпуса. Это очень удобно, так как исчезает риска потерять мелкую, но очень важную деталь.

В случае когда не удается найти проходной элемент, то подключение заземления можно выполнить и скруткой. Однако для верности провода можно залудить паяльником и надеть на них термоусадочную трубку в качестве изоляции. Это вполне оправдано. Не забывайте, что по щиткам все-таки «гуляют» фазовые и нулевые проводники. При отсутствии термоусадочной трубки, вполне можно воспользоваться изоляционной лентой. Это будет не меньшей защитой от всяких неожиданностей.

Кстати, строго стоит помнить и том, что и подключение, и даже заземления нельзя делать так, чтобы скручивать друг с другом медный и алюминиевый провода. Эти два металла образуют гальванопару, что приводит к их окислению и нарушению проводимости между ними. Если получается, что нет возможности подключать их через проходной элемент или колодку со стальными контактами, то можно залудить каждый из проводов и аккуратно пропаять соединение.

Последствия обрыва нуля в трехфазной сети

Расскажу случаи из жизни.

  1. Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное: вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, холодильники, зарядки, и т.п. – то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.
  2. Пришёл по вызову, жалоба – плавает напряжение. Меряю напряжение (всё выключено) – почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.

    Болт нуля. Ржавый, периодически не контачит!!! Если его менять без отключения, 100% в подъезде погорит техника!

    Статья, как я менял там электрощиток – тут.

  3. Меня вызывали в рекламно-издательскую фирму. По предварительным оценкам, ущерб более 100 тыс.руб., а всё из-за плохого контакта на нулевой шине:

Отгорание нуля от нулевой шины

Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).

Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…

На месте этой трагедии я установил трехфазное реле напряжения Барьер, читайте статью по ссылке.

Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.

В этой статье подробно расскажу, почему такое бывает и как с этим бороться.

Правила установки

Монтаж простейшей клеммы к щитку выполняют закрытым и открытым способом. Первый вариант предупреждает злонамеренную порчу шины мощных или важных устройств, второй метод применим при отсутствии риска повреждения аппарата. Нулевые колодки с винтовыми соединениями фиксируют к распределительному щитку на DIN рейке, дополнительной изоляции для заземления не предусмотрено.

Сечение нулевых и фазных проводников является одинаковым. Аналогичное требование предъявляется к параметрам шины: действительным сечением считается размер наиболее тонких участков. При объединении группы проводников земли и нуля конечные потребители после разделения ввода «PEN» подключают к разным шинам: PE и N.

Формирование однофазной и трехфазной сетей и обрыв нуля

Немного теории.

Как известно, мощные потребители (в данном случае – многоквартирные дома) питаются от трехфазной сети, в которой есть три фазы и ноль. Про эту систему я уже писал подробно в статье про отличия трехфазного питания от однофазного, вот картинка оттуда:

Напряжения в трёхфазной системе

Рассмотрим этот вопрос ещё раз, только с другой стороны.

Вот как выглядит упрощенно схема подвода питания в этажный щиток:

Система питания, без обрыва нуля. Резисторами обозначены условно три квартиры.

Фазные провода L1, L2, L3, на которых присутствует напряжение 220В по отношению к нейтральному проводу N, обозначены красным цветом, поскольку они представляют опасность. Заземление РЕ показано внизу, его провод соединяется в распределительном устройстве на вводе в здание с нейтралью.

Подробнее – ещё раз призываю ознакомиться с моей статьёй про системы заземления, ссылка в начале.

Конструктивные особенности

При детальном рассмотрении конструкции, можно заметить, что она представляет собой токопроводящую жилу и основание, изготовленное из пластика, которое предназначено для установки на DIN рейку.

На фото внешний вид НШ:

Токопроводящая жила содержит в себе отверстия и зажимные болты, для фиксации проводников в ней, а также аккуратной и безопасной разводки внутри распределительного устройства проводников N. Различаются между собой НШ как способом монтажа (корпусом), так и количеством монтажных отверстий, соответственно длиной.

Для обеспечения качественного соединения, а также упрощения дальнейшего обслуживания, шина выполнена единым токопроводящим элементом достаточного размера из электротехнической меди или латуни. С различным количеством болтовых зажимов, к которым подводят нулевые (N) проводники.

Различают НШ в корпусе и шины заземления без корпуса, внешне токопроводящие элементы идентичны. Нулевую шину изготавливают в корпусе или устанавливают изолятор. Для правильного функционирования устройств дифференциальной защиты необходимо правильно произвести их подключение, а в распределительном щите разделить проводники N от PE. В случае металлического щита, это можно произвести только изолировав нулевой проводник от корпуса.

К чему приводит отгорание нуля в трехфазной сети

Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:

Обрыв нуля в трехфазной сети

Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.

Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.

Картинка в другом виде, возможно, так будет легче понять:

Перекос фаз в результате обрыва нуля.

Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как ~220B, обозначены как ~0…380B. Объясняю, почему.

Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.

Но в реале так никогда не бывает. В одной квартире никого нет, и включен только телевизор в дежурном режиме и зарядка телефона. А соседи по площадке устроили стирку, включили сплит-систему и электрический чайник. И вот -БАХ!- отгорает ноль.

Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.

У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.

Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.

Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.

Теперь – про

Почему отгорает нулевой провод

Sookie (416style), flickr.com CC BY

Ветреным и дождливым вечером особенно приятно сидеть в квартире, ничего не делая и наслаждаясь теплом и уютом. К сожалению, эта идиллия иногда неожиданно прерывается – лампочки внезапно раскаляются до невыносимой белизны, холодильник гудит и трясется, а телевизор показывает черный экран, да еще с дымком. В электрической сети резко повысилось напряжение! Почему такое происходит и как с этим бороться?

Первое, что приходит в голову – ошибка электрика. Но зажимы фазных и нулевого проводов по внешнему виду, цвету проводов, способу крепления здорово отличаются друг от друга, и перепутать их профессиональный электрик может разве что в бессознательном состоянии. Более вероятной причиной появления в квартире 380 вольт является обрыв нулевого провода. На профессиональном жаргоне это называется отгоранием нуля.

Почему отгорает ноль?

В последнее время такие ситуации происходят все чаще. Это связано как с общим износом электрических сетей, так и с техническими решениями, применявшимися при массовом строительстве домов в 50-70 годы ХХ века. При использовании трехфазной сети все квартиры в доме разбивались на три группы, присоединенные к трем разным фазам.

Тогда мало кто мог представить какую-нибудь электрическую нагрузку в квартире, кроме лампочек освещения и пары маломощных электрических приборов. Нагрузка в многоквартирном доме была практически полностью активной, линейной и симметричной. При этом токи в фазных проводах компенсировали друг друга, а ток в нулевом проводе был сравнительно небольшим. Это привело к очевидному решению – нечего на столь мало работающий провод тратить много материала. Нулевой провод решили делать тоньше фазных.

Современная жизнь внесла значительные коррективы. Не редки ситуации, когда в одной квартире установлены пара лампочек и телевизор, а в соседней – электрические теплые полы, электрический котел, несколько кондиционеров и джакузи. Кроме того, почти вся современная техника имеет импульсные блоки питания, сильно искажающие форму тока в сети. Нагрузка в домах перестала быть симметричной и линейной – компенсации фазных токов не происходит. Подчас ток в нулевом проводе даже больше токов в фазных проводах. Естественно, что более тонкий провод перегревается и не выдерживает.

Почему происходит перенапряжение?

Надо сказать, что при обрыве нуля «везет» далеко не всему дому. Перенапряжение может произойти только на одной или двух фазах. Остальным повезло и на этот раз без кавычек. Проще всего это понять на примере дома из трех квартир.

Каждая квартира питается от своей отдельной фазы А, В или С и нулевого провода N. Напряжение между фазой и нулем 220 вольт – это именно то напряжение, которое нужно в квартире. Напряжение между любыми двумя фазными проводами – 380 вольт. Это неотъемлемое свойство трехфазной электрической сети переменного тока. Такое напряжение в квартире совершенно не требуется, и в исправной сети оно туда и не попадает.

Представим, что в квартире 3 все потребители выключены – это позволит временно исключить ее из рассмотрения вместе с питающей ее фазой С.

И вот в такой ситуации нулевой провод на питающей линии обрывается. Очевидно, что обе квартиры становятся подключенными последовательно, но между двумя фазными проводами. А напряжение между фазами — те самые 380 вольт!

Обрыв нуля в однофазной сети

Тут картина будет следующей:

Обрыв нуля в однофазной сети

Для нагрузки, которая работает на других фазах, вообще ничего не изменится. Это всё равно, как если в своей квартире выключить вводные автоматы – соседям будет по барабану.

Но если обрыв произошел, например, в щитке, то вся квартира, в том числе и оборванный конец нулевого провода, окажется под напряжением 220В!

Обрыв (отгорание) бывает вот из-за таких ржавых болтов, как вверху этого фото:

Плохой ноль. Пропадание нуля в квартире

Повторюсь – если заземление сделано правильно, либо его вообще нет – эта авария ничем не опасна. Ну и, конечно, не нужно трогать провода, не дожидаясь электрика – все они под смертельным потенциалом!

Хорошо, кто виноват – мы поняли. Что делать?

Немного о механике

Разобравшись с вопросом о том, как правильно подключать автомат, остался не рассмотренным вопрос о том, как его установить. Если планируется новый щиток, то, скорее всего, придётся первым делом поставить туда DIN-рейку.

У каждого автоматического выключателя современной конструкции есть специальный зажим для крепления на этой самой рейке. Таким же креплением обладает проходной контакт, который используется для заземляющего проводника. Кстати говоря, защёлка такого заземляющего проводника бывает выполнена не как отдельный пластиковый элемент, а как пружинящая часть корпуса. Это очень удобно, так как исчезает риска потерять мелкую, но очень важную деталь.

В случае когда не удается найти проходной элемент, то подключение заземления можно выполнить и скруткой. Однако для верности провода можно залудить паяльником и надеть на них термоусадочную трубку в качестве изоляции. Это вполне оправдано. Не забывайте, что по щиткам все-таки «гуляют» фазовые и нулевые проводники. При отсутствии термоусадочной трубки, вполне можно воспользоваться изоляционной лентой. Это будет не меньшей защитой от всяких неожиданностей.

Кстати, строго стоит помнить и том, что и подключение, и даже заземления нельзя делать так, чтобы скручивать друг с другом медный и алюминиевый провода. Эти два металла образуют гальванопару, что приводит к их окислению и нарушению проводимости между ними. Если получается, что нет возможности подключать их через проходной элемент или колодку со стальными контактами, то можно залудить каждый из проводов и аккуратно пропаять соединение.

Как защититься от обрыва нуля?

Самая лучшая защита от обрыва нуля в трехфазной сети – это реле напряжения, о котором я писал на блоге не раз. Вот две мои основные статьи – Про реле напряжения Барьер и реле напряжения ЕвроАвтоматика ФиФ.

Из-за своей основной функции это реле называют также Реле обрыва нуля.

Другой вариант – применение стабилизатора напряжения. В нем обязательно должна быть защита от пониженного и повышенного (до 380В) входного напряжения. А при невозможности стабилизировать напряжение он должен отключать квартиру, но оставаться исправным.

Лучший вариант для защиты от обрыва нуля и вообще при нестабильном напряжении – использовать реле напряжения, а вслед за ним – стабилизатор.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]