При последовательном подключении батарей наблюдается разброс параметров изделий, что не позволяет поддерживать требуемое выходное напряжение. Проблема возникает из-за неравномерной зарядки элементов. Для устранения дефекта используется плата балансировки литиевых аккумуляторов, обеспечивающая равномерный заряд изделий и предотвращающая перезаряд элементов аккумуляторной банки.
Узнайте о назначении платы балансировки литиевых аккумуляторов.
Принципы зарядки литий-ионных аккумуляторов
В первую очередь стоит заметить, что полностью заряженный литиевый аккумулятор имеет номинальное напряжение холостого хода 3,7 вольт. При этом заряжать его надо до 4,2 вольта. Противоречия тут нет – заряжать надо на самом деле до указанного порога, а по окончании зарядки за счет саморазряда выходной уровень быстро (максимум – за несколько часов) упадет до 3,7 вольта. После процесс саморазряда резко замедлится, и АКБ будет стабильно держать свои 3,7 вольт.
В отличие от многих типов АКБ, аккумуляторы выполненные по Li-ion технологии в идеале должны заряжаться в два этапа:
- зарядка стабильным током (для его поддержания надо постоянно увеличивать напряжение);
- вторая стадия – дозарядка стабильным напряжением (ток при этом падает).
Профессиональные ЗУ работают по подобному алгоритму.
Классический график заряда литий-ионных батарей.
На этом и последующих графиках не указан предварительный этап, который применяется для глубоко разряженных элементов. Его смысл в том, что такой аккумулятор малым током дотягивается до минимального состояния, а дальше АКБ заряжается, как обычно.
На практике часто используется принцип дозаряда батареи импульсами тока постоянной амплитуды. При достижении определенного уровня напряжения на элементе (обычно 4,15 вольт) зарядник отключается. Напряжение холостого хода недозаряженной АКБ быстро спадает, ЗУ видит это и вновь подает импульс тока до достижения порога 4,15 вольт. С каждым импульсом батарея дозаряжается, и спад происходит все медленнее. Также следующий и дальнейшие импульсы тока будут все короче. За счет этого реализуется псевдостабилизация напряжения в определенных пределах. Плюс такого алгоритма в том, что перезаряд невозможен в принципе, и держать батарею в ЗУ можно сколь угодно долго – при саморазряде она будет периодически подзаряжаться.
Зарядка импульсным током.
Еще один способ реализации второго этапа – зарядка ступенчатым током. На первый взгляд, этот алгоритм усложнен.
Зарядка ступенчатым током.
Но он может быть вырожден до одной ступени – просто снижается напряжение, подводимое к элементу. Зарядный ток остается стабильным, хотя его амплитуда уменьшается. Такой принцип имеет право на жизнь в недорогих зарядных устройствах. Вторая стадия имеет место, в отличие от совсем уж простых зарядников, в которых реализуется только первый этап. Хотя и в этом ничего плохого не происходит – просто емкость АКБ используется не полностью. К тому же в интернете гуляет распространенное, но ничем не подтвержденное утверждение, что заряжать литий-ионные элементы надо только до 90%. Доказательств этому никто не предоставил, верить или нет – личный выбор каждого.
Зарядка одноступенчатым током.
Принцип работы модуля TP4056 с защитой и без
Литиевые аккумуляторы очень требовательны к методам их заряда. Их нельзя заряжать выше 4.2 В и не желательно заряжать большим тока, чем меньше ток заряда, до разумных пределов, тем дольше проживут аккумуляторы. Контроллер TP4056 как раз обеспечивает правильный заряд литиевых аккумуляторов методом CC/CV. CC означает заряд постоянным током, а CV означает заряд постоянным напряжением.
Модули TP4056 с защитой и без защиты производят заряд литиевых аккумуляторов методом CC/CV, обеспечивая постоянный заданный ток заряда в начале заряда, и постоянное напряжение заряда 4.2В в конце заряда. Дополнительно в контроллере реализован метод TC, при котором сильно разряженный аккумулятор заряжается током 1/10 от номинального до достижения аккумулятором напряжения 2.9 В.
По умолчанию на всех модулях заряда TP4056 настроен максимальный ток заряда 1 А. Если напряжение на аккумуляторе более 2.9 В, то заряд аккумулятора сразу равен 1 А, и держится на таком уровне практически до полного заряда. В этот момент на плате горит красный светодиод. Когда напряжение на аккумуляторе приближается к номинальному, ток заряда начинает уменьшаться, при этом поддерживается постоянное напряжение на выходе зарядного устройства 4.2 В. Кривые заряда литиевых аккумуляторов тока и напряжения по методу CC/CV можно посмотреть на графике ниже.
Когда ток заряда снижается до 100 мА, контроллер TP4056 прекращает процесс заряда. В этот момент гаснет красный светодиод и загорается синий.
Модуль TP4056 с защитой контролирует также и разряд литиевого аккумулятора. Аккумулятор защищается от короткого замыкания, при этом, если замкнуть выводные контакты платы, нагрузка будет просто отключаться от аккумулятора, пока не исчезнет КЗ. Во время разряда аккумулятора контролируется ток разряда и напряжение. Ток разряда ограничивается на уровне 3 А, если протекающий ток становится больше, нагрузка отключается от аккумулятора. При понижении напряжения на клеммах аккумулятора ниже 2.5 В нагрузка также отключается от аккумулятора, защищая его от переразряда.
Что понадобиться для самодельного ЗУ
В первую очередь, потребуется выбрать схему зарядки для элементов 18650. Ее выбирают по необходимым параметрам, а также по доступности деталей. Во вторую очередь – навыки чтения схем, изготовления печатных плат в домашних условиях (или, хотя бы, заказа в Китае, что сейчас не так уж дорого), пайки микросхем и других элементов, поиска ошибок и неисправностей. Если этого нет, не стоит и читать, что понадобятся:
- радиоэлементы согласно схеме;
- паяльник с набором расходников;
- плата или заготовка для нее и аксессуары для самостоятельного изготовления.
Также потребуется кейс для установки аккумуляторов на зарядку (с ним удобнее подключить аккумулятор к ЗУ).
Пластиковый кейс для подключения АКБ 18650.
Навыки лучше наработать отдельно, а потом браться за изготовление этих устройств. Они не очень сложны, но требуют осознанного подхода.
Схемы контроллеров заряда
Зарядное устройство на LM317.
Несложное самодельное ЗУ можно собрать на широко распространенной и недорогой микросхеме LM317. В данном случае она включена по схеме стабилизатора напряжения, и АКБ заряжается падающим током. Такой алгоритм не позволяет полностью использовать возможности АКБ, и в этом состоит основной недостаток схемы. Другой недостаток – подавать на схему напряжение ниже 8 вольт нельзя. Поэтому запитать ЗУ от порта USB не выйдет.
Во время процесса контролируется ток в виде падения напряжения на резисторе R1. Как только оно уменьшится до определенного уровня, транзистор VT1 закрывается, и светодиод гаснет, сигнализируя об окончании зарядки. Процесс при этом не прекращается, поэтому следить за состоянием надо самостоятельно. Можно модернизировать схему, включив вместо светодиода реле, которое при выключении своими контактами размокнет силовую цепь.
Несколько сложнее зарядное устройство, позволяющее без всяких контроллеров реализовать алгоритм зарядки импульсным током.
Схема ЗУ с функцией импульсной дозарядки.
На первом этапе аккумулятор заряжается стабильным током, величину которого определяет напряжение питания и номинал резистора RD. Когда напряжение достигает порога 4,15 вольт, срабатывает компаратор и транзистор VT1 запирается. Напряжение на элементе скоро упадет до уровня ниже порога, и транзистор вновь откроется. Эта процедура будет продолжаться циклически, но, по мере заряда, паузы будут все дольше, а импульсы все короче. В итоге аккумулятор зарядится до напряжения 4,15 вольт, которое выставляется резистором R1.
Анализ схемы показывает, что ее можно легко упростить, не снижая функциональности. Так, вместо трансформатора со средней точкой и выпрямителя можно взять любой источник питания с напряжением 5 вольт (сильно увеличивать напряжение не надо, элементы силовой цепи будут греться, приближая тепловую смерть вселенной). Транзистор можно заменить на биполярный (подойдет и отечественный КТ827).
Упрощенная схема ЗУ.
Детектор напряжения можно заменить на KIA742, KIA719, KIA739. В итоге схема примет следующий вид.
Также можно использовать специализированные микросхемы, специально разработанные для создания подобных зарядных устройств. Одна из них — MCP73831.
Алгоритм зарядки, реализуемый на MCP73831 (на примере АКБ емкостью 180 мА*ч).
Она поддерживает правильный двухэтапный режим зарядки. Ток задается номиналом резистора, подключаемого между выводами 5 и 2. Единственный недостаток – наибольший ток, который можно снять с микросхемы – 500 мА. Этого не всегда достаточно, элементы большой емкости будут заряжаться долго.
Типовая схема включения MCP73831.
Также можно собрать зарядник на других специализированных микросхемах, специально разработанных для подобной цели. Помимо классической MAX1555, это могут быть:
- LP2951;
- LTC4054;
- TP4056;
- LTC1734;
- MCP73812;
- NCP1835;
- другие микросхемы.
У каждого элемента есть свои плюсы и минусы. Чтобы в них разобраться и сделать правильный выбор, надо читать даташиты.
Общие сведения о литийионных аккумуляторах
Литиевые аккумуляторы появились относительно недавно, но уже прочно заняли ведущие позиции в электропитании автономных устройств. Конструктивно такой источник питания представляет собой два электрода — катод и анод. Первый выполнен из того или иного соединения лития (обычно кобальт-литий или литий-феррофосфат), второй — из графита. Электроды погружены в безводный раствор электролита. Бывают разные форм-факторы и типоразмеры батареек этого типа. Наиболее распространённые форм-факторы литийионных аккумуляторов — цилиндрический и прямоугольный.
Прямоугольные элементы можно увидеть в устройствах малой толщины — мобильных телефонах, смартфонах, планшетах и т. п. Обычно в батареях такой формы в качестве электролита используют полимерный материал, а сами аккумуляторы называют литий-полимерными.
Выходное напряжение всех литиевых аккумуляторов меняется от 4,2 до 2,5 В в зависимости от степени зарядки и в среднем составляет 3,7 В. Электрическая ёмкость же бывает разной – от десятков миллиампер в час (мА·ч) до десятков ампер в час (А·ч). Зависит от назначения источника питания и его размеров.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос
Важно! Речь идёт о единичных аккумуляторах. Батареи, составленные из нескольких элементов, могут иметь любое напряжение и любую ёмкость. Например, батареи электромобилей имеют напряжение до 380 В при ёмкости в сотни киловатт-час, а батарея ноутбука выдает 12,6 В.
Срок службы литиевого аккумулятора зависит от условий эксплуатации и обычно составляет 2–3 года при количестве циклов заряд/разряд до 600 у литийионных и до 900 у литий-полимерных батарей. Основные качества аккумуляторов этого типа:
- большая плотность энергии на единицу массы;
- низкий саморазряд;
- отсутствие эффекта памяти;
- не требуют обслуживания;
- теряют работоспособность при перезарядке и глубоком разряде;
- взрывоопасность при перегреве.
В чем отличие контроллера заряда и схемы защиты
У некоторых пользователей периодически возникает вопрос, вынесенный в заголовок раздела – зачем нужен контроллер заряда, если есть схема защиты (индивидуальная или общая в виде платы балансировки). Дело в том, что эти устройства решают разные задачи:
- защитный модуль предохраняет элемент от перезаряда, не дает уйти в глубокий разряд, отключает батарею при превышении допустимой температуры;
- контроллер заряда формирует правильный режим пополнения энергии – стабилизирует ток на заданном уровне, осуществляет дозаряд по различным алгоритмам.
А путаница может возникнуть из-за того, что встречаются случаи, когда часть функций этих устройств дублируется. Так, защита от перегрева может быть встроена как в плату защиты, так и в контроллер заряда. А предохранять от перезаряда может как встроенная плата (отключая батарейку), так и зарядное устройство (завершая процесс пополнения энергии).
Характеристики модулей TP4056 с защитой аккумулятора и без защиты
Модули TP4056 с защитой и без отличаются только функцией защиты аккумуляторов, а характеристики, касающиеся заряда литиевых аккумуляторов у них идентичные. Естественно, габариты у них тоже отличаются.
Характеристики модуля TP4056 без защиты: Рекомендуемое входное напряжение: 5 В Диапазон входных напряжений: 4.5 – 8 В Максимальный ток заряда по умолчанию: 1000 мА Напряжение прекращения заряда: 4.2 В (± 1%) Размер платы: 23 мм x 17 мм Статусы светодиодов: красный – заряд, синий (зеленый) – заряд окончен
Характеристики модуля TP4056 с защитой: Рекомендуемое входное напряжение: 5 В Диапазон входных напряжений: 4.5 – 8 В Максимальный ток заряда по умолчанию: 1000 мА Напряжение отключения аккумулятора при разряде: 2.5 В Максимально допустимый ток разряда: 3 А Напряжение прекращения заряда: 4.2 В (± 1%) Размер платы: 27 мм x 17 мм Статусы светодиодов: красный – заряд, синий (зеленый) – заряд окончен
Общий принцип сборки для любого зарядного для 18650
В первую очередь надо изготовить плату. Ее можно разработать самостоятельно (в программах типа Sprint LayOut), можно найти готовую в интернете. Дальше два пути:
- Изготовить плату методом ЛУТ или по другой домашней технологии.
- Заказать плату в Китае.
Во втором варианте плата будет заведомо качественнее, но обойдется дороже, да и подождать придется не один день.
При сборке зарядки для аккумуляторов типоразмера 18650 на специализированных микросхемах, надо иметь в виду, что их корпуса зачастую сверхминиатюрны, и для пайки таких элементов нужны отдельные навыки.
Рекомендации по зарядке литиевых аккумуляторов 18650
В первую очередь, нельзя допускать глубокого разряда литий-ионных элементов. В большей степени это касается незащищенных аккумуляторов, но АКБ с платой защиты также радикально не ограждены от данной проблемы. Да, схема отключит элемент при достижении нижнего порога, но саморазряда она не отменит. Поэтому при хранении неиспользуемых АКБ лучше их периодически подзаряжать. Если глубокого разряда избежать не удалось, можно попробовать довести аккумулятор до напряжения 2,4 вольта малым зарядным током (0,1..0,2 от емкости). Если получится – дальше можно заряжать обычным способом, если нет – элемент придется утилизировать.
Также надо внимательно относиться к вопросам перезарядки. Элементы с маркировкой Protected отключатся при достижении верхнего лимита, а вот банки без платы защиты будут заряжаться дальше. И погасание светодиода ЗУ проблему не снимает – в большинстве случаев это всего лишь индикация достижения номинального напряжения, а отключения зарядника не происходит. Учитывая пожароопасность литий-ионных аккумуляторов и проблемы с их тушением, надо самостоятельно следить за окончанием процесса и вовремя выключать зарядник из сети.
Самодельные зарядные устройства для литий-ионных батарей работают ничуть не хуже промышленных. Но только если собраны и настроены грамотным пользователем, понимающим процессы, происходящие во время пополнения энергии.