Трансформатор напряжения принцип работы
Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.
Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.
Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.
Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.
В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.
измерительный трансформатор напряжения
Принципы работы трансформатора напряжения
Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:
- первичной;
- вторичной.
Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.
Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.
Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.
Коэффициент трансформации
Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).
Формула по вычислению коэффициента трансформации
- U1 и U2 — напряжение в первичной и вторичной обмотки,
- N1 и N2 — количество витков в первичной и вторичной обмотке,
- I1 и I2 — ток в первичной и вторичной обмотки.
Более подробно про расчёт коэффициента трансформации.
Расшифровка и маркировки
Для различения разновидностей моделей к ним применяют буквенную маркировку:
Н – трансформатор напряжения; Т – трехфазная модель; О – однофазный ТН; С – сухой (воздушное охлаждение); М – масляный; А – антирезонансные модели; К – каскадные устройства; Ф – фарфоровый тип корпуса; И – пятистержневой трансформатор, содержащий обмотку для контроля изоляции; Л – конструкции в литом корпусе; ДЕ – емкостные; З – заземляемые (первичную катушку необходимо заземлять).
Технические параметры
Технические параметры трансформаторов:
величина напряжения на первичном фазном входе; напряжение на выводах вторичных фазных обмоток; коэффициенты мощности; максимальные напряжения короткого замыкания. К важным сведениям относится параметры номинальной частоты и класс точности для номинального коэффициента трансформации. На некоторых моделях изготовители указывают угловые погрешности и допустимые погрешности напряжений.
Основные сведения указываются на шильдике трансформатора напряжения.
Устройство однофазного трансформатора напряжения
устройство однофазного трансформатора напряжения
Устройство однофазного трансформатора напряжения:
- а — общий вид трансформатора напряжения;
- б — выемная часть;
- 1,5 — проходные изоляторы;
- 2 — болт для заземления;
- 3 — сливная пробка;
- 4 — бак;
- 6 — обмотка;
- 7 — сердечник;
- 8 — винтовая пробка;
- 9 — контакт высоковольтного ввода
Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.
Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.
Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).
Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.
У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).
Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ
Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.
Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.
схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗ
- См. трансформаторы ЗНОЛ, схемы характеристики в таблице
Внутренний и внешний контур
Как правило, главную шину внутри здания устанавливают внутри устройства ввода. Ее допустимо изготавливать только из стали или из меди. Применение алюминия в данном случае не разрешено. Предпринимают меры, предотвращающие свободный доступ к ней посторонних людей. Шина размещается в запирающемся шкафчике, или в отдельном помещении.
К ней подключают:
- металлические элементы конструкции здания;
- проводник внешнего контура заземления;
- проводники РE и PEN типов;
- металлические трубопроводы и проводящие части систем водоснабжения, кондиционирования и вентиляции.
Внешний контур дома создают, учитывая перечисленные выше нормы ПУЭ по отдельным частям системы. Это позволит получить необходимое минимальное сопротивление системы заземления (Ом), которое достаточно для надежной защиты. Для повторного заземления рекомендуется использовать заземлители естественного типа.
Сопротивление (Ом) повторного заземлителя не определено четко положениями ПУЭ.
Ниже приведены некоторые важные особенности стандартного заземлителя частного дома:
- Основную часть, вертикальные элементы, устанавливают на небольшом удалении от дома, с учетом параметров грунтов.
- К ним прокладывают траншею глубиной до 0,8 м и не менее 0,4 м шириной, в которой устанавливаются горизонтальные участки цепи. Точной нормы нет, но размеры траншеи должны быть достаточными для беспрепятственного монтажа элементов.
- Вертикальные заземлители длиной до 3 м устанавливают в углах равностороннего (по 3 м) треугольника. Эти размеры приведены в качестве примера. Точных нормативов по длине нет. Есть нормы только по максимально допустимому сопротивлению защитной системы.
- Чтобы проще было забивать их в грунт, концы заостряют.
- К выступающим частям сварным соединением крепят полосы.
- Траншеи засыпают равномерным по структуре грунтом, не содержащим щебня.
Монтаж внешнего контура заземления частного дома
Если в цепи заземления применяются болтовые соединения, предпринимают меры против их раскручивания. Как правило, соответствующие узлы приваривают.
Схемы включения трансформаторов напряжения
Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:
- проводами линии с целью контроля линейных напряжений;
- шиной или проводом и землей, чтобы снимать фазное значение.
Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.
На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.
Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.
Простейшая схема подключения применяется в пунктах обслуживания линий под напряжением 6 – 10 кВ. Подключенные по такой схеме трансформаторы используются для включения вольтметра и подачи напряжений на реле устройства АВР.
Пример такой схемы показан на рис. 7.
Рис. 7. Простая схема подключения трансформатора напряжения
На рисунке 8 приведена схема, применяемая для включения однофазных трансформаторов с целью подачи безопасного напряжения на нагрузки, запитанные от вторичных обмоток. В данной схеме использовано группу однофазных трансформаторов, катушки которых соединены по принципу звезды. Обратите внимание, что первичные обмотки соединены с глухозаземленной нейтралью.
Рис. 8. Еще пример схемы подключения
Данная схема применяется в сетях 0,5 – 10 кВ для подключения измерительных приборов, счетчиков. По аналогичной схеме подключаются вольтметры, используемые для контроля изоляции.
Схема эффективна для приема сигналов, свидетельствующих об однофазных замыканиях на землю. Существуют и другие схемы подключений, в частности по типу соединения открытого треугольника. Особенность таких схем в том, что мощность группы из двух ТН меньше мощности трех устройств соединенных по схеме полного треугольника не в 1,5 раза, а в √3 раз.
В некоторых схемах применяется комбинированное соединение обмоток. Для этого подходит соединение «треугольник – звезда». В работе таких схем номинальное напряжение составляет 173 В. Указанный способ подключения применяется в системах регулирования возбуждения обмоток генераторов и компенсаторов.
Заземления трансформаторов освещения 36 Вольт
Особенности применения и устройства сварочных трансформаторов
Правила устройства электроустановок для повышения безопасности людей требуют заземлять не только корпус трансформатора, но ещё и его вторичную обмотку. Тогда в случае пробоя первичной обмотки, где протекает 220 или 380 Вольт, в цепях освещения не появится это смертельно опасное напряжение.
В любом случае человеческая жизнь является приоритетной в любой работе, поэтому перед прикосновением к металлическому корпусу любого электрического аппарата, устройства, шкафа, щита и т. д. стоит убедиться визуально в существовании заземления и его целостности.
XXI CENTURY Конфетка Помадка Душистая вода
266 ₽ Подробнее
Видеоняня Моторола MBP36S (цвет белый)
12900 ₽ Подробнее
Кожаные женские туфли
Трансформатор напряжения при напряжении до 35 кВ
Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.
рис. 2.1 Схема включения однофазного трансформатора напряжения
Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5
В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные трансформаторы напряжения (ТН). Выбор того или иного типа трансформатора напряжения зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).
Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.
По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.
Обозначение трансформатора напряжения на схеме
Обозначение трансформатора напряжения на схеме
Предохранители трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.
В чем его достоинства и недостатки
Любое электротехническое приспособление обладает рядом преимуществ и недостатков. Однофазные электрические трансформаторы этому не исключение. Достоинств у них больше, чем минусов. Основными из них являются:
- обладают одним из самых больших коэффициентов полезного действия (КПД), который составляет 98 %;
- отлично охлаждаются и обладают повышенной стойкостью к перегрузкам и кратковременным скачкам напряжения;
- экологическая безопасность сухого вида. Масла в них нет, а значит, что окружающей среде ничего не может навредить даже после утилизации;
- отсутствие нужды соблюдения особых противопожарных мер в местах установки трансформаторов;
- сравнительно небольшие размеры, позволяющие устанавливать аппараты в небольшие отсеки.
Вам это будет интересно БП из электронного трансформатора
Не лишены эти приборы и ряда недостатков, которые зависят от их вида и места применения:
- сложное обслуживание, если аппарат масляный. Его регулярно нужно проверять на пробой и подтекание резиновых прокладок, замена которых достаточно сложная;
- сухие однофазные приборы не переносят повышенную влажность, ветер, химические и физические воздействия, а также загрязнение;
- высокая стоимость сухих трансформаторов по сравнению с масляными.
Обычный прибор для однофазных сетей
Трёхфазный трансформатор
Среди электромагнитных устройств данного типа выделяется трёхфазный трансформатор. Он имеет магнитную и гальваническую связи фаз. Наличие схемы первого типа обусловлено соединением магнитопроводов в одну систему. При этом потоки магнитного воздействия расположены относительно друг друга под углом 120 °. Стержень в данной системе не нужен, так как при объединении центров трёх фаз сумма электромагнитных русел равняется нулю вне зависимости от времени. Благодаря этому схема с шестью стержнями преобразуется в трёхстержневую.
В соединении обмоток устройства можно использовать схемы трёх типов:
- Соединение в виде звезды может осуществляться с выводом от общих точек или же без него. Здесь каждую обмотку соединяют с нейтральной точкой.
- По треугольной схеме фазы соединяются последовательно.
- Зигзаг-это схема, которая чаще всего применяется во время отвода от общей точки. В ней соединяются три обмотки, расположенные на разных стержнях магнитопроводов.
Применение трёхфазного трансформатора является более экономичным, чем использование соединённых однофазных конструкций.
Нагрузка трансформаторов напряжения
Вторичная нагрузка трансформатора напряжения—это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.
Конструкции трансформаторов напряжения
В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях — только однофазные.
При напряжениях до 20 кВ имеется большое число типов трансформаторов напряжения: сухие (НОС), масляные (НОМ, ЗНОМ, НТМИ, НТМК), с литой изоляцией (ЗНОЛ). Следует отличать однофазные двухобмоточные трансформаторы НОМ от однофазных трехобмоточных трансформаторов ЗНОМ. Трансформаторы типов ЗНОМ-15, -20 -24 и ЗНОЛ-06 устанавливаются в комплектных токопроводах мощных генераторов. В установках напряжением 110 кВ и выше применяют трансформаторы напряжения каскадного типа НКФ и емкостные делители напряжения НДЕ.
Измерительные трансформаторы напряжения
Измерительные трансформаторы напряжения предназначены для уменьшения первичных напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.
Чем отличается трансформатор тока от трансформатора напряжения?
По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками
Видео: Трансформаторы напряжения
Технические характеристики трансформаторов напряжения, схемы включения. Факторы, влияющие на класс точности. Виды трансформаторов напряжения, расшифровка маркировки.
Что такое трансформатор напряжения
Особенности
Как правило, однофазные трансформаторы используют в электрических сетях и в роли источников питания различных устройствах.
Исходя из того факта, что нагрев провода прямо пропорционален квадрату току, идущего через провод, то при передаче энергии на дальние расстояния выгоднее будет использовать высокие напряжения и небольшие токи. Для исключения повреждений электроприборов и уменьшения объёма изоляции в домашних условиях лучше использовать низкие мощности.
Также читайте: Для чего нужен высокочастотный заградитель
Ввиду этого, для уменьшения затрат на транспортировку электрической энергии в общей электросети в большом количестве применяются силовые трансформаторы: вначале увеличивают напряжение генераторов на электростанциях перед передачей энергии по кабелю, а уже после транспортировки уменьшают напряжение линий электропередач до нужного уровня в повсеместном использовании.
Однофазные трансформаторы
для “Что такое трансформатор напряжения”
- Rom
:в
На моем автомобиле, который привезен из Канады, установлен подогрев двигателя на 110 В. Мощность подогрева неизвестна. Сечение провода около 0,75 по внешнему виду. Хочу купить или сделать трансформатор. Если покупать, то их мощности указаны в кВА, что это значит, объясните, пожалуйста, популярно. Или подскажите как его можно сделать. Какую мощьность на ваш взгляд подобрать можно?
Ответить
- Expert
:
в
Измерьте сопротивление подогревателя (любым кетайским мультиметром). Его мощность будет P = U*U/R, P в ваттах, U в вольтах, R в омах. Трансформатор выбирать лучше с полуторным запасом примерно, на всяк. К тому же реальная мощность будет меньше, т.к. при нагреве сопротивление увеличится и мощность уменьшится. Насколько трудно сказать, смотря из чего сделан подогреватель и смотря как сильно он нагревается. Но это тоже на запас можно списать. В случае чисто активной нагрузки типо подогревателя можно считать, что кВА = кВт.
Ответить
- Rom
:
в
Спасибо Expert за пояснение! Сопротивление было измерено ранее — 35 Ом. P=U*U/R=110*110/35=346 Вт*1,5 = 519 Вт. Т.е. я могу взять трансформатор на 0,5 кВА
А в каком случае кВА не равно кВт ?
Ответить
- Expert
:
в
По идее достаточно просто трансформатора 220/110. Он и дешевле будет и с ним безопаснее, он даёт полную развязку от сети, а автотранформатор нет.
Вообще кВА = кВт*КМ, где КМ — коэффициент мощности, он бывает от 0 до 1.
У чисто активной нагрузки (нагреватель, лампа накаливания и тп.), когда просто какое-то линейное сопротивление, КМ близкий к 1.
А вот если в нагрузке имеется реактивность (индуктивность, ёмкость) или нелинейность, а то и всё вместе, то КМ может быть гораздо ниже, и тогда разницу между кВА и кВт уже нужно учитывать. кВА — это полная мощность, кВт — потребляемая активная мощность.
Ответить
- Admin
:
в
Через автотрансформатор ваш подогреватель будет гальванически связан с сетью, он не даёт развязки. А через трансформатор — полная развязка. Если есть полная уверенность, что изоляция подогревателя рассчитана на прямое подключение к сети и она в порядке — можно и через автотрансформатор. Если такой уверенности нет, то лучше не рисковать.
Ответить
- Володя К
:
в
Вообще кВА = кВт*КМ, где КМ — коэффициент мощности, он бывает от 0 до 1. У чисто активной нагрузки (нагреватель, лампа накаливания и тп.), когда просто какое-то линейное сопротивление, КМ близкий к 1.
А вот если в нагрузке имеется реактивность (индуктивность, ёмкость) или нелинейность, а то и всё вместе, то КМ может быть гораздо ниже, и тогда разницу между кВА и кВт уже нужно учитывать. кВА — это полная мощность, кВт — потребляемая активная мощность.
Ответить
- Elka
:
в
Не хватает мозгов или знаний (или того и другого) для того, чтобы понять, почему некоторый трансформаторы тока и трансформаторы напряжения, казалось бы в одинаковом конструктивном исполнении в работе ведут себя совершенно по-разному.
Ответить
- Denos Fox
:
в
Трансформатор напряжения питается от напряжения. Т Е первичная обмотка будет иметь количество витков и сечение в соответствии напряжению. Трансформатор тока питается от возникшего тока в проводнике. Т.Е первичная обмотка получит напряжение от тока в проводнике. И этот ток создаст напряжение в первичной обмотке.
Ответить
- Elka
:
в
Denos Fox, спасибо, но я всё равно не догоняю.
Назначение трансформатора тока мне ясно — чтобы измерять большой ток, необходимо сначала понизить силу тока до величин, приемлемых для измерения приборами, дабы не спалить эти приборы. Но вот как это работает — непонятно. Ведь, если напряжение вторичной обмотки ТТ доходит до нескольких тысяч вольт, при замыкании этой обмотки накоротко через неё должен пойти гигантский ток, который, во-первых, должен спалить вторичную обмотку с подключенными к ней измерительными приборами, во-вторых, привести к резкому увеличению тока первичной обмотки с подключенными к ней потребителями.
Мне тут пытались объяснить, что трансформатор тока — повышающий транс, поэтому на вторичной обмотке получаем меньший ток, несмотря на большее напряжение. Но я так и не понял суть.
Рассмотрим два случая:
Конструктивные отличия трансформаторов тока и напряжения
В первом случае мы подключили нагрузку к обмотке понижающего транса на напряжение 220В, во втором — эту же нагрузку мы подключили к обмотке повышающего транса на напряжение 110000В. Но это же не значит, что во втором случае через нагрузку пойдёт меньший ток! Уменьшение тока при повышении напряжения, по идее, работает лишь в том случае, когда мощность конечного потребителя неизменна, как в самом первом примере из первого поста, когда мы передавали ток через цепочку трансов на потребитель, подключенный на постоянное(по величине) напряжение — 220В.
Во втором же примере мы подключаем нагрузку на разное напряжение, и, чем больше это напряжение, тем больше будет ток через нагрузку, при том что ток в обмотке низшего напряжения по-прежнему будет больше тока в обмотке высшего напряжения. Так почему же в случае трансформатора тока увеличение напряжения на вторичной обмотке, к которой подключены измерительные приборы, приводит к уменьшению тока в ней?
Ответить
- Вован
:
в
У трансформатора тока, ток первичной обмотки не зависит от тока вторичной.
Ответить
- Петрович
:
в
Трансформатор на 110В выдержит 220В ? Т.е. на выходе мы получим удвоенное напряжение или же первичная обмотка просто сгорит ?
Ответить
- Вектор
:
в
а если подать 220 на первичку через диод (вроде как раз половина останется)
Ответить
- Леха
:
в
Попробуй лампочку ильича включить в 220 и посмотреть результат. Достают любители жопонии привозят а посля … ЭкстрЁмалы блин.
Ответить
- Сава
:
в
я сейчас попробовал к первичке транса (на 220 В) подключить 220 В через диод ну как бы 1 полуволну (ЛН через диод горит вполнакала -точно) а трансформатору что с диодом что без -выдает переменку одинаковое кол-во вольт. синусойда на выходе примерно одинаковая не порезанная(пробовал с нагрузкой и без)
Ответить
- Серый П
:
в
А вот в чем реально отличия обмоток трансформаторов на разное напряжение — там что меняют толщину лакового покрытия ? Если померить сопротивление изоляции мегомметром — это может показать, на сколько рассчитан трансформатор ? К примеру, если найти трансформатор без надписей — как узнать, на сколько он рассчитан ?
Ответить
Технология проведения работ
Выбираем место размещения заземлителей. Разумеется, недалеко от дома (объекта), чтобы не пришлось прокладывать длинный проводник, который придется механически защищать. Желательно, чтобы вся площадь контура находилась на территории, которую вы контролируете (являетесь собственником). Чтобы в один прекрасный момент, ваша защитная «земля» не была выкопана пьяным экскаваторщиком. Так что забивать штыри за забором не будем.
Подойдет огород (за исключением картофельной грядки), палисадник, клумба возле дома. Возделываемые участки предпочтительнее, они регулярно поливаются. А дополнительная влага в земле пойдет на пользу заземлению. Если ваш грунт обладает низким удельным сопротивлением — можно установить заземление на площадке, которая затем будет покрыта асфальтом или плиткой. Под искусственным покрытием земля не пересушивается. Да и риск повредить контур заземления минимален.
В зависимости от формы площадки, выбираем порядок расположения электродов: в линию, или треугольником.
Если выбран треугольник — размечаем площадку соответствующей формы со сторонами 2.5–3 метра. Копаем траншею в форме равностороннего треугольника на глубину 70–100 см, шириной 50–70 см. Мы знаем, что все заземлители соединяются между собой. Проводник должен быть углублен на расстояние не менее 50 см, с учетом минимального уровня грунта (например, вскопка грядки). Если сверху будет уложено покрытие — его толщина в расчет не берется. Только чистый грунт.
Можно выбрать весь грунт, не только по периметру траншеи. Получится треугольная яма глубиной 0.7–1.0 м. Готовый контур можно будет засыпать грунтом с низким удельным сопротивлением. Например, золой или пеплом. Соли проникнут в землю, и будут способствовать снижению общего сопротивления растекания тока.
После чего, по углам ямы (траншеи) начинаем забивать электроды.
Параметры заземлителей (рассматриваем вертикальное расположение)
Сталь без гальванического покрытия:
Круг — диаметр 16 мм.
Труба — диаметр 32 мм.
Прямоугольник или уголок — площадь поперечного сечения 100 мм².
Сталь оцинкованная
Круг — диаметр 12 мм.
Труба — диаметр 25 мм.
Прямоугольник или уголок — площадь поперечного сечения 75 мм².
Круг — диаметр 12 мм.
Труба — диаметр 20 мм.
Прямоугольник или уголок — площадь поперечного сечения 50 мм².
Грунт должен плотно облегать металлическую поверхность заземлителя. Красить электроды запрещено!
А как быть, если по расчетам длина каждого из трех электродов превышает 1.5–2 метра? Есть небольшие секреты.
Соединяем электроды проводником. Если арматура стальная — лучше всего подойдет сварка. Медные стержни соединяются болтовой стяжкой, проводник должен иметь сечение не менее 30% от сечения электродов.
После сборки контура, проводим замеры сопротивления растекания тока. Требования к контуру заземления для индивидуального жилья — 10 Ом. Измерение лучше доверить сертифицированным специалистам, у которых имеется соответствующее оборудование. Тем более, что при получении ТУ от энергетиков, вам все равно придется представить систему заземления для измерений. Если сопротивление выше нормы — добавляем электроды и привариваем их к контуру. Пока не получим норму.
Зачем заземлять
Заземление нейтрали трансформатора необходимо для создания стабильной работы электроустановки и безопасности людей, которые могут находиться на подстанции.
Рабочее заземление на трансформаторе является частью защитного. Это значит, что заземление, предназначенное для стабильной работы устройства, также защищает от поражения током.
Правила устройства электроустановок требуют, чтобы все силовые трансформаторы были заземлены.
В трансформаторах напряжения заземляется только трансформатор. Согласно правилам устройства электроустановок у трансформатора напряжения заземление вторичной обмотки происходит путем соединения общей точки или одного из концов обмотки с заземляющим проводником.
В трансформаторах тока заземляются вторичные обмотки. Для подключения проводников предусмотрены специальные зажимы. Обмотки нескольких установок можно соединять одним проводником и подключать к одной шине.
В электротехнике выделяют понятие сети с эффективно заземленной нейтралью. Оно применимо для силового трансформатора, у которого заземлено большинство нейтралей обмоток (глухое заземление нейтрали).
Если произойдет однофазное замыкание, то напряжение на поврежденных фазах не должно быть выше 1,4 напряжения на рабочих фазах в нормальных условиях.
Что важно учитывать при подключении?
Для облегчения монтажа производители наносят на них маркировку: ТАа, ТА1, КА1, что позволяет без ошибок соединить элементы.
При установке трансформатора на трехфазные линии необходимо учитывать, что, если напряжение в сети составляет от 6 до 35 кВ, трансформаторы могут быть установлены только на двух фазах, поскольку в таких сетях отсутствует нулевой провод.
Чтобы заказать трансформаторы тока и другую электротехнику, проконсультироваться по вопросам ее выбора, подключения и эксплуатации, звоните по телефонам: +375 (162) 44-66-60 или +375 (29) 978-35-00.
Источник: viva-el.by
Заземление отдельных бытовых приборов и оборудования
Часто бывает, что владельцы частных домов (особенно дачных), не видят смысла монтировать полноценное заземление. Оправдывать или осуждать мы никого не можем, а значит рассмотреть этот вариант так же стоит. Разберемся, как заземлить водонагреватель в частном доме, не монтируя при этом всей системы защиты.
Сделать это довольно просто, используя естественный заземлитель. От него нужно проложить кабель непосредственно к прибору или к розетке, от которой устройство питается. Часто, таким образом, производится заземление газового котла в частном доме, но можно так защитить и любой другой бытовой прибор.
Встречаются «электромонтеры», которые на вопрос, как заземлить розетку в частном доме, советуют бросить перемычку от нулевого контакта на заземляющий. Прислушиваться к подобным советам явно не стоит – это чревато проблемами. О подобных ошибках мы обязательно сегодня поговорим. А сейчас стоит подробнее остановиться на том, как проверить готовый контур заземления, соответствует ли он необходимым требованиям.
Основные преимущества изделий
Использование трансформаторов тока дает следующие преимущества:
- Унификация измерительных приборов, градуировка их шкал в соответствии с измеряемым первичным током;
- Повышается уровень безопасности при работе с различными реле и измерительными приборами за счет разделения цепей высшего и низшего напряжения;
- Увеличивается максимальный диапазон напряжений и пределов измерения для различных измерительных приборов;
- Обеспечивается питание токовых обмоток реле защиты и измерительных приборов;
- Надежная изоляция от высокого первичного напряжения.
Популярные схемы подключения
Если ТТ используется для подключения через них вольтметров, амперметров и других высокочувствительных приборов, измеряющих ток небольшой силы, подключение трансформаторов тока производится по следующей схеме:
Первичная обмотка Л1-Л2 соединяется с линейным проводом, а вторичная обмотка ТТ И1-И2 соединена с токовой обмоткой измерительного прибора. Выводы Л1, И1 соединены перемычкой и подключены к фазному проводу. Третий зажим соединяется с нулевым проводом.
Для трехфазной электросети чаще всего используются три однофазных трансформатора, которые подключаются по схеме:
Если требуется подключение понижающего устройства, следует руководствоваться схемой:
Чаще всего она используется для создания систем освещения. Небольшой размер ТТ дает возможность монтировать их непосредственно в каркасе потолка. Трансформатор располагается между выключателем и светильниками. Светильники подключаются параллельно.