Что такое переходное сопротивление и как его измерить

В электротехнике очень часто возникает необходимость коммутации электрических цепей. Каждое электромеханическое коммутирующее устройство имеет, как минимум, одну пару соединительных контактов. Вопреки ожиданиям, нередко можно наблюдать, что контакты нагреваются. Виной тому является переходное сопротивление контактов, от которого невозможно полностью избавиться.

Контактное пятно образуется в результате любого соприкосновения проводников. В точке соединения проводов всегда возникает сопротивление, которое превышает величину удельных сопротивлений материалов проводника. Существует несколько причин такого явления, о которых речь пойдёт в данной статье. А для начала выясним, что подразумевают под термином переходного сопротивления контактов.

Введение

Электрический контакт является одним из основных элементов любой электрической схемы. В связи с усложнением технических систем растет количество и разнообразие типов и форм контактов, их режимов и условий работы. Роль контактов становится ответственнее как в техническом, так и в технико-экономическом отношении. Все это требует более интенсивного и глубокого изучения физических процессов в различных режимах и условиях работы контактов, методов инженерного расчета и конструирования, правильного нормирования режимов и условий работы, разработки и исследования новых контактных материалов и новых конструктивных форм контактов.

В данной статье излагаются основные принципы действия, физические процессы и явления, происходящие в электрических соединителях, обозначаются основные понятия и их физический смысл. Приводятся факторы, определяющие надежность, долговечность и условия сохраняемости электрических соединителей. Определяются пути повышения надежности и долговечности, излагаются правила эксплуатации.

Наши преимущества

Лицензия РосТехНадзора №5742

Лицензируемая организация ООО Инженерный центр ”ПрофЭнергия” гарантирует точность, объективность и достоверность результатов.

Поверенные приборы и оборудование (СП №0889514)

Проверенные приборы и оборудование (СП №0889514): В нашей кампании используется только качественные приборы и оборудование.

Бесплатный выезд на объект и расчет сметы

Бесплатный выезд на объект и расчет сметы: Наши специалисты бесплатно приедут на объект и рассчитают стоимость.

На 25% выгоднее конкурентов

На 25% выгоднее конкурентов: У нас честные цены. А так же действуют индивидуальные скидки.

Кандидаты технических наук в штате

Кандидаты технических наук в штате: «ПрофЭнергия» имеет очень отлаженный коллектив квалифицированных инженеров с допусками ко всем видам проводимых работ.

Болтовые контактные соединения.

Контактные соединения, выполненные с помощью болтов, чаще всего имеют дефекты из-за отсутствия шайб в месте соединения медной жилы с плоским выводом из меди или сплава алюминия, отсутствия тарельчатых пружин, непосредственного подсоединения алюминиевого наконечника к медным выводам оборудования в помещениях с агрессивной или влажной средой, в результате недостаточной затяжки болтов и др. Болтовые контактные соединения алюминиевых шин на большие токи (3000 А и выше) недостаточно стабильны в эксплуатации. Если контактные соединения на ток до 1500 А требуют подтяжки болтов 1 раз в 1 — 2 года, то аналогичные соединения на токи 3000 А и выше нуждаются в ежегодной переборке с непременной зачисткой контактных поверхностей. Необходимость в такой операции связана с тем, что в многоамперных шинопроводах (сборные шины электростанций и т.п.), выполненных из алюминия, более интенсивно протекает процесс образования оксидных пленок на поверхности контактных соединений. Процессу образования оксидных пленок на поверхности болтовых контактных соединений способствуют различные температурные коэффициенты линейного расширения стальных болтов и алюминиевой шины. Поэтому при прохождении по шинопроводу тока КЗ, при работе его с переменной токовой нагрузкой в нем при большой протяженности в результате вибрационных воздействий происходит деформация (уплотнение) контактной поверхности алюминиевой шины. В этом случае усилие, стягивающее две контактные поверхности ошиновки, ослабевает, имевшийся между ними слой смазки испаряется и т.д. Из-за образования оксидных пленок площадь соприкосновения контактов, т.е. число и размер контактных площадок (число точек), через которые проходит ток, уменьшаются и, вместе с тем, увеличивается плотность тока, которая может достигать тысяч ампер на квадратный сантиметр, вследствие чего сильно растет нагрев этих точек. Температура последней точки достигает температуры плавления материала контакта, и между контактными поверхностями образуется капля жидкого металла. Температура капли, повышаясь, доходит до кипения, пространство вокруг контактного соединения ионизируется, и появляется опасность многофазного замыкания в РУ. Под действием магнитных сил дуга может перемещаться вдоль шин РУ со всеми вытекающими отсюда последствиями. Опыт эксплуатации показывает, что наряду с многоамперными шинопроводами недостаточной надежностью обладают и одноболтовые контактные соединения. Последние, в соответствии с ГОСТ 21242-75, допускаются к применению на номинальный ток до 1 ООО А, однако повреждаются уже при токах 400 — 630 А. Повышение надежности одноболтовых контактных соединений требует принятия ряда технических мер по стабилизации их электрического сопротивления. Процесс развития дефекта в болтовом контактном соединении, как правило, протекает достаточно длительно и зависит от ряда факторов: тока нагрузки, режима работы (стабильная нагрузка или переменная), воздействия химических реагентов, ветровых нагрузок, усилий затяжки болтов, стабилизации давления контактов и др. Переходное сопротивление болтового контактного соединения зависит от продолжительности токовой нагрузки. Переходное сопротивление контактных соединений постепенно повышается до определенного момента, после чего происходит резкое ухудшение контактной поверхности контактного соединения с интенсивным тепловыделением, свидетельствующим об аварийном состоянии контактного соединения. Аналогичные результаты были получены специалистами фирмы “Инфраметрикс” (США) при тепловых испытаниях болтовых контактных соединений. Повышение температуры нагрева в процессе испытаний носило постепенный характер в течение года, а затем наступал период резкого повышения тепловыделения.

Испытания сопротивления заземления

Существуют приемо-сдаточные и эксплуатационные испытания.

Первые на основании ПУЭ проводятся после окончания работ по установке защитного заземления. Эксплуатационным испытаниям, регламентируемым ПТЭЭП, подвергаются электроустановки, которые сданы в эксплуатацию. При данном виде испытаний, обследования проводятся на протяжении всего периода работы защитного устройства.

В соответствии с правилами измерение сопротивления заземляющей конструкции должно осуществляться один раз в шесть лет. Если есть подозрение на повреждение заземляющего устройства, такое испытание проводится чаще.

Замеры переходного сопротивления проходят не менее одного раза в год.

Кроме измерения сопротивления также при испытаниях должен происходить тщательный осмотр всех видимых частей заземляющего устройства.

Раз в 12 лет необходимо проводить детальный осмотр с частичным вскрытием грунта в местах наиболее вероятного появления коррозии. Если грунт в данном районе ведет себя агрессивно, то количество таких осмотров увеличивается.

Также один раз в шесть лет проводится проверка состояния предохранителей.

Если в результате проверки было выявлено более 50% повреждений, такую защитную конструкцию следует заменить в обязательном порядке.

Как правильно измерять переходное сопротивление

Есть определенные правила, описывающие правильное измерение Rn для устройств коммутации. К ним относятся автоматические выключатели, всевозможные разъединители и шины.

Методов измерений насчитывается несколько:

  • метод, когда отсчет производится прямо и непосредственно;
  • с использованием мультиметра (можно также пользоваться амперметром или вольтметром);
  • способ измерения нестабильного статического поведения сопротивления перехода.

Обратите внимание! Первый пункт предполагает использование приборов для непосредственного расчета с погрешностью менее 10 %. Чаще им пользуются для измерения Rn контактного соединения

Перед замером контакты не очищают. Их соединяют с выводами приборов. При этом перемещать приборы и размыкать контакты противопоказано.

При втором способе определяется величина падения напряжения при фиксированном значении тока на переходе, который тестируется. Погрешность любого прибора в измерительной системе подобного рода не более 3 %. Изначально значение сопротивления подбирается в несколько раз больше, чем предполагаемое. Расчет выполняется по формуле: Rп = UPV2/IPA, где UPV2 — цифра, которую показал вольтметр PV2 в В; IPA — ток, измеренный амперметром PA в Ам.

Статическая нестабильность сопротивления перехода определяется исходя из среднеквадратичного изменения Rn, определяемого в ходе многократного измерения. Погрешность таких замеров +/- 10 %.

Как часто замерять ПС заземления

Заземление – это специальное соединение оборудования с заземляющим устройством (ЗУ).

ЗУ представляет собой устройство, состоящее из следующих элементов:

  • заземлителя (контура заземления);
  • шины заземления;
  • заземляющих проводников.

Проверку в полном объёме с вскрытием грунта, осмотром состояния заземлителей и соединяющих их проводников проводят 1 раз в 12 лет. Внеплановые проверки проводят после капитальных ремонтов, связанных с заземляющими элементами. Срок проверки и измерений ПС ЗУ назначается на основании рекомендаций организации, которая выполняла предыдущую проверку.

К сведению. Замеры рекомендовано производить в месяцы наибольшего промерзания или высыхания грунта.

Значение Rп, лежащее в пределах регламентируемых норм, обеспечивает стабильную работу коммутационных устройств. Это, в свою очередь, способствует бесперебойной и безопасной эксплуатации оборудования.

Контактная поверхность

Поверхность контакта, как и всякого твердого тела, всегда обладает шероховатостью и волнистостью. Приближенно геометрическую модель контактной поверхности можно рассматривать как некоторую волнистую поверхность, на которой расположены сферические выступы. Высота выступов относительно основания волн неодинакова. Статистическое распределение значений высот этих выступов близко к нормальному.

Наличие шероховатости и волнистости приводит к тому, что две поверхности всегда контактируют только в отдельных «пятнах».

Поверхность, представляющая собой совокупность точек, через которые передается давление, называется эффективной поверхностью механического контакта, и если это чистый металл, то есть его поверхность свободна от непроводящих пленок, то такая поверхность будет также являться эффективной поверхностью электрического контакта.

Эффективная поверхность контакта является функцией контактного нажатия.

Под действием усилия нажатия две поверхности сближаются за счет деформации контактирующих выступов, и в соприкосновение входит все большее и большее количество отдельных выступов. Сближение контактирующих поверхностей происходит до тех пор, пока сумма реакций упруго деформированных выступов не будет равна усилию нажатия N, то есть когда:

где nk — количество контактирующих выступов; Ni — реакция выступа, деформированного на величину Δi .

Величина эффективной контактной поверхности при этом равна:

где r — средний радиус выступов, величина которого определяется чистотой обработки контактных поверхностей.

Зависимость между величиной эффективной контактной поверхности и контактным давлением можно представить в виде:

для случая контактирования по линии (например, контакт между образующей цилиндра и плоскостью).

для случая контактирования по плоскости, где Е — модуль Юнга; hm — максимальная высота выступов; no — общее количество выступов на «кажущейся» контактной поверхности.

При контактных давлениях порядка 0,015ч1,0 кгс, которые обычно имеют место на практике в разъемных контактах, эффективная поверхность контактирования ничтожно мала по сравнению с кажущейся контактной поверхностью. Обычно она составляет от долей до единиц процента.

Металлосвязь и проверка наличия цепи заземления

Начиная статью, уместно ответить на вопрос: «Что такое металлосвязь ?». Металлосвязь – это величиная, которая характеризует контактное соединение заземляемого объекта с заземляющим устройством. В процессе эксплуатации электроустановки из-за коррозии, замыкания или механического повреждения возникают разрывы цепи заземления, что приводит к появлению опасной разницы потенциалов, что в свою очередь может привести к травмам и порче электрооборудования. При касании незаземленной дверки электрического щита, корпуса электрооборудования или корпуса светильника в процессе технического обслуживания существует риск поражения электрическим током. Многие чувствительные электроприборы в принципе не могут работать без качественного заземления.

Во избежание вышеуказанных случаев необходимо проводить измерение металлосвязи с привлечением электротехнической лаборатории. Протокол металлосвязи по результатам обследования включает отчет о целостности проводников, величине сопротивления тестируемого участка цепи и значении напряжения на заземляемом оборудовании. Сопротивление тестируемого участка является показателем качества соединения. Правила устройства электроустановок ПУЭ включают в себя допустимые значения сопротивления.

Для замеров используется прибор из парка электролаборатории, который подает ток на тестируемый участок и показывает сопротивление участка цепи. Полученное значение, как правило, не должно превышать 0,05 Ом. Проверка металлосвязи проводится и в рамках приемо-сдаточных испытаний, и в рамках профилактических испытаний, проводимых каждые 2-3 года. Периодичность испытаний определяется эксплуатирующей организацией исходя из рекомендаций ГОСТ Р 50571.16-2007, ПТЭЭП, ПОТРМ и состояния электроустановки. Испытание металлосвязи возможно проводить без отключения напряжения. Измерение сопротивления металлосвязи необходимо поручать только аттестованным лабораториям, так как без аттестата Ростехнадзора протокол не имеет законной силы для контролирующих органов. ОАО «Энергетик ЛТД» предлагает замеры металлосвязи по ценам, существенно ниже рыночных, за счет большого объема проводимых работ на территории Москвы и Московской области.

Все материалы защищены законом РФ об авторских правах и ГК РФ. Запрещено полное копирование без разрешения администрации ресурса. Разрешено частичное копирование с прямой ссылкой на первоисточник. Автор статьи: коллектив инженеров ОАО «Энергетик ЛТД»

Особенности износа контактов, размыкаемых под током

Нормальный режим работы основной массы электрических соединителей предусматривает их размыкание и соединение в обесточенном состоянии. Исключение составляют разрывные соединители и некоторые другие конструкции.

Иногда возникает необходимость размыкания электрических соединителей под током. Это крайне нежелательно, так как такой режим эксплуатации резко снижает ресурс нормальной работы электрических соединителей.

При размыкании контактов под током происходит резкое увеличение переходного сопротивления и падения напряжения на них, что приводит в соответствии с уравнением

к возрастанию температуры контактируемых выступов, вплоть до температуры плавления материала контакта. В первый момент размыкания контактов между ними образуется мостик из расплавленного металла покрытия контактов и металла самих контактов, который при дальнейшем расхождении контактов будет утончаться не в середине, а ближе к положительному электроду, где, наконец, прервется. Это явление аналогично электролизу. Этот процесс вызывает перенос металла с одного контакта на другой. Указанное явление получило название мостиковой эрозии контактов.

При напряжениях и токах в размыкаемой цепи, меньших определенных значений для конкретных материалов контактов (например, для серебра U I

В результате эрозии изменяется микрогеометрия контактных поверхностей, что приводит к повышению механического износа контактных поверхностей, так как электрическая эрозия препятствует переходу процесса износа контактов из фазы приработки в фазу нормального износа.

В том случае, когда напряжение и ток в раз- рываемой цепи больше определенных значе- ний (например, для серебра U > 12 В, I > 0,4 А), между контактами при их размыкании возникает электрическая дуга. Дуга вызывает повышенную эрозию контактов — как за счет своего термического действия, так и за счет бомбардировки катода ионами газа, которые образуются в момент горения дуги. Режим работы электрических соединителей с образованием между контактами в момент их размыкания электрической дуги является крайне нежелательным и при эксплуатации электрических соединителей его необходимо исключать. Даже кратковременная работа соединителей в режиме образования электрической дуги практически сводит к нулю ресурс нормальной эксплуатации электрических соединителя.

Механизмы

Для заданных физико-механических свойств материала параметры, которые определяют величину электрического контактного сопротивления (ECR) и его изменение на границе раздела, в первую очередь относятся к структуре поверхности и приложенной нагрузке ( механика контакта ). Поверхности металлических контактов обычно имеют внешний слой из оксидного материала и адсорбированных молекул воды, что приводит к переходам конденсаторного типа на слабоконтактных выступах и контактам резистивного типа на сильно контактирующих выступах, где прикладывается достаточное давление, чтобы выступы проникли в оксидный слой, формирование пятен контакта металл-металл. Если пятно контакта достаточно маленькое, с размерами, сравнимыми или меньшими, чем длина свободного пробега электронов, сопротивление в пятне может быть описано с помощью , посредством чего перенос электронов может быть описан баллистической проводимостью . Как правило, со временем пятна контакта расширяются и контактное сопротивление на границе раздела, особенно на слабо контактирующих поверхностях, уменьшается в результате сварки под действием тока и пробоя диэлектрика. Этот процесс известен также как ползучесть сопротивления. При механистической оценке явлений ЭЦР необходимо учитывать взаимосвязь химии поверхности , механики контактов и механизмов переноса заряда.

Факторы, из-за которых появляется

Сопротивление контакта связывает между собой отдельные участки цепи. В месте соединения образуется взаимное прикосновение провождения тока. Через этот участок ток из одной ветки может попасть в другую. Если просто наложить жилы друг на друга, то надежного соединения не будет. Связано это в первую очередь с тем, что поверхность, какой бы гладкой она не казалась, состоит из неровностей. При многократном увеличении это можно заметить даже на идеально отшлифованных и отполированных материалах.

Важно! На практике станет понятно, что площадь реального контакта намного меньше, чем визуального. Еще одним фактором возникновения сопротивления перехода является пленка, получающаяся в результате окисления металла проводника

Такие пленки мешают току двигаться и стягивают его направления в точках касания. Избавиться от этого полностью нельзя, так как его величина всегда больше, чем удельное сопротивление металла проводника

Еще одним фактором возникновения сопротивления перехода является пленка, получающаяся в результате окисления металла проводника. Такие пленки мешают току двигаться и стягивают его направления в точках касания. Избавиться от этого полностью нельзя, так как его величина всегда больше, чем удельное сопротивление металла проводника.

Какая периодичность измерений

Перед тем как замерить сопротивление заземления тем или иным способом – важно учесть требования ПУЭ в части периодичности проведения этих испытаний. Согласно основным положениям этого документа они могут проводиться в следующих формах:

  • плановые обследования;
  • внеочередные проверки;
  • пусковые испытания.

Периодичность каждой из этих разновидностей проверок определяется теми целями, которые они перед собой ставят. Периодичность проверок сопротивления изоляции станционного оборудования обычно согласуется с обследованием самого ЗК. Рассмотрим различные их виды более подробно.

Плановые проверки

Сроки проведения плановых мероприятий оговариваются инструкцией РД-34.22.121-87, а также требованиями ПУЭ. Из этих документов можно узнать, какова периодичность визуального осмотра видимых частей устройств заземления, которая согласно им организуется не реже одного раза в полгода. Помимо этого из этих же нормативов следует, что не реже чем раз в 12 лет должны проводиться обследования конструкции со вскрытием грунта вокруг нее. Измерение сопротивления контуров заземления согласно тем же документам должно проводиться не реже раза в 6 лет.

Ответственными за проведение таких проверок являются лица, уполномоченные на это соответствующими органами. Владелец частного дома должен заранее оформить заявку на их проведение с последующей оплатой. По завершении испытаний он обязан предоставить в местную энергетическую службу протокол измерений сопротивлений контактов между элементами ЗК.

Внеочередные

Внеочередные измерения параметров контура должны проводиться в следующих внештатных ситуациях:

  • После внесения в конструкцию изменений, не предусмотренных проектом, но влияющих на сопротивление растеканию току (измерение заземления в частном доме должно проводиться при переносе его на другое место).
  • После аварийного разрушения и последующего восстановления ЗК.
  • По завершении ремонтных работ.

Периодичность их проведения по понятным причинам не регламентируются.

Пусковые или вводные

Пусковые или вводные проверки заземления и измерения сопротивления организуются сразу же по окончании монтажа защитного контура (то есть накануне сдачи его представителю местной энергетической службы). Для этого потребуется пригласить специалиста от электрической лаборатории или другой организации, имеющей лицензию на право проведения таких испытаний.

По итогам проверки оформляется акт приемки, являющийся основанием для последующего пуска устройства в эксплуатацию и подтверждением того, что все питающие линии в частных домах заземлены.

Условия проведения испытаний

При организации мероприятий по проверке заземления важно обратить внимание на те условия, в которых предполагается их проведение. Они должны учитываться еще на стадии подготовки испытаний, а по их окончании вноситься в особый журнал. Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты

Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения

Согласно требованиям действующих нормативов (ПУЭ, в частности) для этого желательно выбирать летнюю пору с солнечной сухой погодой, позволяющей получить наиболее близкие к реальности результаты. Это объясняется тем, что в такое время грунт поддерживается в достаточно сухом состоянии, соответствующем реальным условиям эксплуатации защитного сооружения.

При проведении контрольных замеров допустимых сопротивлений в осеннюю сырую погоду, например, полученные результаты будут в значительной степени искажены. Это объясняется тем, что пропитанный влагой грунт существенно увеличивает показатель проводимости почвы. Для того чтобы избежать всех этих сложностей и получить значение близкое к реальной величине – проще всего воспользоваться услугами профессионалов. Для этого необходимо обратиться в специальную электротехническую лабораторию, имеющую лицензию на проведение соответствующих работ.

Специалисты по прибытию на место выявят все факторы и организуют испытания защитного оборудования в соответствие с требованиями действующих нормативов. По завершении всего испытательного цикла ими же будет оформлен протокол измерения сопротивления заземления образец которого представлен ниже.

Протокол проверки сопротивлений заземлителей

Влияние встроенного трансформатора тока (ТТ) на измерение Rпер баковых выключателей

При подаче измерительного тока через полюс бакового выключателя во вторичной обмотке ТТ возникает переходный процесс, который проявляется в индуцировании в первичную цепь импульса напряжения, постепенно спадающего до нуля. Это изменяющееся напряжение суммируется падением напряжения на Rпер., созданного измерительным током, и воспринимается микроомметром как дополнительное (внесение из вторичной обмотки ТТ) сопротивление, включенное последовательно Rпер. и изменяющееся во времени. Время затухания переходного процесса спада внесенного сопротивления зависит от многих факторов и может меняться от 1,0 до 60 с. Переходный процесс, в цепи содержащей ТТ, возникает не только при включении тока, но и при его выключении.

Нормы для каждого из типов

Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

  1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
  2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
  3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
  • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
  • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
  • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
  • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.

Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

Что такое переходное сопротивление

Переходным называют такое сопротивление, которое возникает в местах проводника, где ток проходит с одного провода на другой или с проводника на какой-либо электрический прибор. Случается это в тех случаях, когда имеет место плохое соединение или контакт проводов.

Варианты контактов проводов

Исходя из законов физики, в таких местах при прохождении тока нагрузки выделяется определенное тепло. Его величина равна квадрату проходящего тока, поделенного на сопротивление места контакта. Такие места могут нагреваться до достаточно больших температур и при соприкосновении с материалами, подверженными горению или плавлению, могут вызвать пожар и нестабильную работу оборудования.

Обратите внимание! Именно такие контакты являются основной причиной пожарных ситуаций, взрывов и коротких замыканий. Опасность также возникает из-за того, что такие контакты тяжело обнаружить, а механизмы защиты сетей и приборов, даже если они современные, не всегда могут предотвратить аварийную ситуацию

От чего зависит сопротивление

Общее сопротивление

На величину ПС влияют следующие причины:

  • плотность тока в месте смыкания контактов;
  • сила, с которой сжимаются поверхности соединения;
  • материал, из которого изготовлены контакты;
  • уровень окисления металлических поверхностей.

Важно! Любое контактное соединение Rк является суммой пары сопротивлений: R (металла, из которого изготовлен контакт) и Rп (переходного) – Rп = R + Rк.

Факторы, влияющие на величину переходного сопротивления

Удельное сопротивление

Прежде, чем говорить о факторах, нужно знать, что собой представляют контакты. Они различаются по виду контактируемой поверхности:

  • точечные – соединение происходит в точке;
  • линейные – соприкасаются по линии;
  • плоскостные – контакт по плоскости.

Примеры точечных соединений – «сфера – сфера»; «вершина конуса – плоскость», «сфера – плоскость» и др. К линейным относятся соприкосновения: «тор – плоскость», «цилиндр – плоскость», «цилиндр – цилиндр» и т.п.

Площадь прикосновения контактов можно подсчитать по формуле:

Sпр = F/σ,

где:

  • F – сила сжатия контактов;
  • σ – временное сопротивление материала контактов сжатию.

Существуют разные способы соединения:

  • механические (скрутки, болтовые зажимы, опрессовка);
  • сварка;
  • пайка.

Величина переходного сопротивления определяется по формуле:

Rп = knx/(0,102*Fk)n,

где:

  • knx – коэффициент, обуславливаемый материалом, формой контакта, состоянием поверхности;
  • Fk – сила, с которой сжимаются контакты;
  • n – показатель степени, показывающий число точек соприкосновения.

Показатель степени для разных видов контактов:

  • для точечного – n = 0,5;
  • для линейного – n = 0,5-0,7;
  • для плоскостного (поверхностного) – n = 0,7-1.

Существуют принятые по гост ГОСТ 24606.3-82 нормы переходного сопротивления контактов.

Внимание! С окислением поверхностей металлов в местах соединений можно бороться при помощи протирания контактов спиртосодержащими растворами. Допустимо смазывать болтовые соединения солидолом, это поможет снижать доступ кислорода и замедлять процесс окисления

Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением.

К сведению. Плохое прижатие контактируемых поверхностей вызывает не только повышение сопротивления, но и увеличение степени нагрева проводников.

Результат нагрева места соединения

Методика измерения

Гост 21534-76 нефть. методы определения содержания хлористых солей (с изменениями n 1, 2, 3, с поправкой)

Существует регламент измерений Rп для коммутационных устройств: автоматических выключателей, разъединителей, сборных и соединительных шин и другой аппаратуры.

Методы измерений следующие:

  • метод непосредственного отсчёта;
  • способ вольтметра-амперметра;
  • измерение статической нестабильности Rп.

При первом способе тестирования применяют приборы, позволяющие выполнять непосредственный отсчёт с учётом погрешности (±10%). При этом методе измеряют сопротивление контактного соединения.

Важно! Тестируемые поверхности контакт-детали не зачищают и не обрабатывают перед измерением. Контакт-деталь сочленяют (замыкают) и присоединяют к выводам приборов. Размыкание контактов и передвижение измерительных проводов недопустимы

Размыкание контактов и передвижение измерительных проводов недопустимы.

При помощи метода вольтметра-амперметра определяют величину падения напряжения (при установленном значении тока) на тестируемом переходе.

Все погрешности измерений приборов, входящих в схему, должны быть в пределах ±3%. Значение R1 подбирают на два порядка больше, чем предполагаемое измеряемое сопротивление.

Расчёт результатов измерений выполняют по формуле:

Rп = UPV2/IPA,

где:

  • UPV2 – результат, полученный на вольтметре PV2, В;
  • IPA – ток, измеряемый амперметром PA, А.

Статическую нестабильность Rп определяют, находя величину среднеквадратичного отклонения Rп по результатам многочисленных замеров.

Внимание! Переходное сопротивление замеряют одним из методов, рассмотренных выше. Контакт-деталь размыкают и заново смыкают перед каждым тестированием, снимая электрическую нагрузку. Необходимый результат получают, используя формулы на рис

ниже

Необходимый результат получают, используя формулы на рис. ниже.

Погрешность результатов, полученных при этом методе, лежит в пределах ±10% (с вероятностью 0,95).

Перечень приборов, применяемых для измерений

Измерения Rп переходов проводят и микрометром ММR-610. В результате работы тестируют сопротивления постоянному току контактов автоматов и других соединений. Проводят два вида измерений:

  • однонаправленным током;
  • двунаправленным током.

В первом случае не отображается величина активного сопротивления R, зато этот метод убыстряет процесс измерений там, где нет внутренних напряжений и сил электростатики. Во втором случае прибор устраняет погрешности (ошибки), возникающие от присутствия в тестируемой конструкции таких сил и напряжений.

Микроомметр MMR – 610

Полученные в результате измерений (проверки) данные записываются в протокол, согласно ПУЭ-7 п.1.8.5. Протокол хранится совместно с паспортами на оборудование.

Подпишись на RSS!

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

  • Транзисторный ключ с ограничением тока 3 июня 2020
  • Зарядное для аккумуляторов шуруповерта на базе XL4015 5 апреля 2020
  • Зарядное для авто со стабилизацией тока на L200 19 марта 2020
  • Индикатор шестиразрядный на TM1637 13 марта 2020
  • Регулируемый стабилизатор тока на L200 11 марта 2020
  • Зарядное устройство для автомобильных аккумуляторов — 237
  • Стабилизатор тока на LM317 — 173
  • Стабилизатор напряжения на КР142ЕН12А — 124 884 просмотров
  • Реверсирование электродвигателей — 101
  • Зарядное для аккумуляторов шуруповерта — 98 420 просмотров
  • Карта сайта — 96
  • Зарядное для шуруповерта — 88
  • Самодельный сварочный аппарат — 87
  • Схема транзистора КТ827 — 82
  • Регулируемый стабилизатор тока — 81
  • DC-DC (4)
  • Автомат откачки воды из дренажного колодца (5)
  • Автоматика (34)
  • Автомобиль (3)
  • Антенны (2)
  • Ассемблер для PIC16 (3)
  • Блоки питания (30)
  • Бурение скважин (6)
  • Быт (11)
  • Генераторы (1)
  • Генераторы сигналов (8)
  • Датчики (4)
  • Двигатели (7)
  • Для сада-огорода (11)
  • Зарядные (17)
  • Защита радиоаппаратуры (8)
  • Зимний водопровод для бани (2)
  • Измерения (34)
  • Импульсные блоки питания (2)
  • Индикаторы (6)
  • Индикация (10)
  • Как говаривал мой дед … (1)
  • Коммутаторы (6)
  • Логические схемы (1)
  • Обратная связь (1)
  • Освещение (3)
  • Программирование для начинающих (16)
  • Программы (1)
  • Работы посетителей (7)
  • Радиопередатчики (2)
  • Радиостанции (1)
  • Регуляторы (5)
  • Ремонт (1)
  • Самоделки (12)
  • Самодельная мобильная пилорама (3)
  • Самодельный водопровод (7)
  • Самостоятельные расчеты (37)
  • Сварка (1)
  • Сигнализаторы (5)
  • Справочник (13)
  • Стабилизаторы (16)
  • Строительство (2)
  • Таймеры (4)
  • Термометры, термостаты (27)
  • Технологии (21)
  • УНЧ (2)
  • Формирователи сигналов (1)
  • Электричество (4)
  • Это пригодится (12)
  • Архивы Выберите месяц Июнь 2022 (1) Апрель 2022 (1) Март 2020 (3) Февраль 2022 (2) Декабрь 2022 (2) Октябрь 2022 (3) Сентябрь 2019 (3) Август 2022 (4) Июнь 2022 (4) Февраль 2022 (2) Январь 2019 (2) Декабрь 2022 (2) Ноябрь 2022 (2) Октябрь 2022 (3) Сентябрь 2018 (2) Август 2022 (3) Июль 2022 (2) Апрель 2022 (2) Март 2022 (1) Февраль 2022 (2) Январь 2022 (1) Декабрь 2022 (2) Ноябрь 2022 (2) Октябрь 2022 (2) Сентябрь 2022 (4) Август 2022 (5) Июль 2022 (1) Июнь 2022 (3) Май 2022 (1) Апрель 2022 (6) Февраль 2022 (2) Январь 2017 (2) Декабрь 2016 (3) Октябрь 2016 (1) Сентябрь 2016 (3) Август 2016 (1) Июль 2016 (9) Июнь 2016 (3) Апрель 2016 (5) Март 2016 (1) Февраль 2016 (3) Январь 2016 (3) Декабрь 2015 (3) Ноябрь 2015 (4) Октябрь 2015 (6) Сентябрь 2015 (5) Август 2015 (1) Июль 2015 (1) Июнь 2015 (3) Май 2015 (3) Апрель 2015 (3) Март 2015 (2) Январь 2015 (4) Декабрь 2014 (9) Ноябрь 2014 (4) Октябрь 2014 (4) Сентябрь 2014 (7) Август 2014 (3) Июль 2014 (2) Июнь 2014 (6) Май 2014 (4) Апрель 2014 (2) Март 2014 (2) Февраль 2014 (5) Январь 2014 (4) Декабрь 2013 (7) Ноябрь 2013 (6) Октябрь 2013 (7) Сентябрь 2013 (8) Август 2013 (2) Июль 2013 (1) Июнь 2013 (2) Май 2013 (4) Апрель 2013 (7) Март 2013 (7) Февраль 2013 (7) Январь 2013 (11) Декабрь 2012 (7) Ноябрь 2012 (5) Октябрь 2012 (2) Сентябрь 2012 (10) Август 2012 (14) Июль 2012 (5) Июнь 2012 (21) Май 2012 (13) Апрель 2012 (4) Февраль 2012 (6) Январь 2012 (6) Декабрь 2011 (2) Ноябрь 2011 (9) Октябрь 2011 (14) Сентябрь 2011 (22) Август 2011 (1) Июль 2011 (5)
  • Переходное сопротивление — контакт

    Переходное сопротивление контакта — сопротивление электрического контакта, складывающееся из сопротивления, возникающего вследствие сужения сечения материала в его элементарных бугорках, через которые проходит ток, и сопротивления плохопроводящих окисных, масляных, сульфидных, газовых пленок и пыли.  

    Временной график испытания монтажных соединений на надежность.  

    Переходное сопротивление контакта измеряют миллиомметром методом вольтметра и амперметра.  

    Зависимость переходного сопротивления от контактного нажатия.  

    Переходное сопротивление контактов обусловлено не только явлением стягивания линий тока. Контактирующие поверхности покрыты адсорбированными молекулами газа, в котором располагались контакты до их замыкания.  

    Переходное сопротивление контакта может возрастать в десятки и сотни раз вследствие окисления, контактных поверхностей. В частности, нередко такое отклонение-вызывается нагревом контактов свыше 70 — 75 С.  

    Переходное сопротивление контакта может увеличиться из-за коррозии контактов и других явлений. Кроме того, при малом нажатии повышается чувствительность к вибрации, что ведет к изменению сопротивления и увеличению собственного шума ( Контактов. Вибрации могут вызываться механическими влияниями и колебаниями тока в катушке, а также потоками рассеяния соседних реле.  

    Переходное сопротивление контакта при этом уменьшается с повышением тока таким образом, что постоянным оказывается переходное падение напряжения в контакте. Для щеток из натурального графита оно равно 0 7 — 1 2 в на щетку, а для электрографитированных щеток-0 8 — 1 7 в. Следовательно, при нагрузке щетки током, равным, например, 50 с, в тонком слое между щеткой и кольцом или коллектором будет выделяться, переходя в тепло, энергия, равная 40 — 80 вт. При разрыве точек, непосредственно касавшихся друг друга, или возникает и короткое время удерживается электрическая дуга, или проскакивает весьма кратковременная электрическая искра Это происходит в том случае, когда емкость, параллельная щеточному контакту, включающая в себя емкость кабелей возбуждения и емкость обмоток ротора компенсатора или якоря возбудителя, имеет достаточную величину. При небольших токах эти дуги или искры могут быть микроскопически малыми и поэтому незаметными глазу. Токи большей величины сопровождаются более заметными дугами или искрами, особенно если наблюдать их в темноте.  

    Схема измерения минимального вжима контактов выключателя МКП-110.  

    Переходное сопротивление контактов измеряется микроомметром при включенном выключателе.  

    Схема измерения минимального вжима контактов выключателя МКП-110.  

    Переходное сопротивление контактов измеряется микрометром при включенном выключателе.  

    Переходное сопротивление контактов ( Ккот) в среднем может приниматься равным 0 05 — 0 1 ом.  

    Переходное сопротивление контактов, погруженных в масло или просто смазанных маслом, почти всегда оказывается меньше, чем для сухих контактов, так как масло способствует очистке поверхностей от загрязнения, а после разрушения окисной пленки вследствие трения при переключении препятствует повторному окислению. Медные и латунные контакты в трансформаторном масле почти не окисляются. Сопротивление стальных контактов за это время возросло более чем в 40 раз, в то время как конечные значения сопротивлений медных и латунных контактов как непокрытых, так и луженых и никелированных, практически равны начальным.  

    Переходное сопротивление контактов в микроомах определяется по формуле ( 2 — 8), причем в подавляющем большинстве случаев контакты переключающих устройств следует считать точечными, полагая / п0 5, что дает некоторый запас надежности.  

    Сложность измерения сопротивлений в различных соединениях

    В силовой электрической цепи полюса высоковольтного выключателя кроме переходного сопротивления контактов присутствует и сопротивление различных соединений. Чаще всего приборы комплектуются только измерительным кабелем зажимом типа «крокодил», и при неправильном его подключении к контактам между аппаратным зажимом и шпилькой ввода — переходное сопротивление может иметь завышенныо значения, прибор покажет значение выше паспортной величины, и будет выполнен совершенно не нужный ремонт контактов выключателя.

    Если же снимать потенциальные сигналы не аппаратных зажимов, а со шпилек, то в измеряемый участок цепи окажется включенным только переходное сопротивление контактов выключателя. Но закрепить «крокодилы» непосредственно за шпильки часто не удается из-за отсутствия доступа к ним, поэтому прибор должен комплектоваться специальными выносными потенциальными контактами.

    Рейтинг
    ( 2 оценки, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]