Сигнал — это любая переменная содержащая какой-либо вид информации. Причем эту информацию можно передавать на расстояние, переносить на устройства хранения, выводить на экран и через динамики или совершать с ней подобные действия. Существующие аналоговый и цифровой кардинально отличаются природой происхождения, способом передачи и хранения.
Аналоговый сигнал
Это природный тип сигналов окружает нас повсеместно и постоянно. Звук, изображение, тактильные ощущения, запах, вкус и команды мозга. Все возникающие, во Вселенной без участия человека, сигналы являются аналоговыми.
В электронике, электротехнике и системах связи аналоговую передачу данных применяют со времени изобретения электричества. Характерной особенностью является непрерывность и плавность изменения параметров. Графически сеанс аналоговой связи можно описать как непрерывную кривую, соответствующую величине электрического напряжения в определённый момент времени. Линия изменяется плавно, разрывы возникают только при обрыве связи. В природе и электронике аналоговые данные генерируются и распространяются непрерывно. Отсутствие непрерывного сигнала означает тишину или черный экран.
В непрерывных системах связи аналогом звука, изображения и любых других данных является электрические или электромагнитные импульсы. Например, громкость и тембр голоса передаются от микрофона на динамик посредством электрического сигнала. Громкость зависит от величины, а тембр от частоты напряжения. Поэтому при голосовой связи сначала напряжение становится аналогом звука, а потом звук аналогом напряжения. Таким же образом происходит передача любых данных в аналоговых системах связи.
Дискретная видеокарта
Видеокарта – один из важнейших элементов компьютера, отвечающий за визуализацию информации. Конструкция компа может быть оснащена либо интегрированной (встроенной) видеокартой, либо дискретной. Встроенная размещается в процессоре или на материнской плате, т.е. она неотделима от конкретного компьютера.
Дискретная видеокарта выполнена на отдельной плате, снабжена индивидуальным графическим процессором и памятью. Поэтому она более производительна, чем интегрированная.
Часто в компьютерах применяются видеокарты обоих видов, что позволяет пользователю при необходимости переключаться с одной на другую.
Что такое дискретный сигнал
В цифровой системе хранения и передачи данных, отсутствие сигнала, также является формой обмена информацией. В какой-то момент времени он равен нулю, в другой принимает какое-либо значение. Поэтому дискретным называют сигнал прерывный, отсюда и название discretus или разделённый. Аналоговые данные разбиваются на отдельные блоки, обрабатываются и передаются в виде цифрового кода.
Дискретность не подразумевает разрыв связи. В цифровых системах широко используется двоичная система обработки и обмена информацией. Двоичная подразумевает кодировку данных с помощью единицы и нулей. В доли секунды сигнал прерывисто принимает значение 1 или 0. Вместо непрерывной кривой имеем отдельные дискретные значения. Определенный набор нулей и единичек уже несёт в себе какую либо информацию. Примитивный набор это бит или двоичный разряд. Сам по себе он ничего не значит. Данные могут кодироваться только при объединении восьми битов в следующую по сложности комбинацию – байт. Чем больше объединённых байтов, тем больше и точнее можно описать передаваемую информацию.
На качество генерируемых данных влияет не только количество объединённых битов, но и скорость передачи. Непрерывная аналоговая кривая должна быть разбита на как много больше мини участков прерывного сигнала. Полученный таким образом звук и цвет будут соответствовать оригиналу. Качественный дискретный сигнал формирует точную копию аналогового. Например, звуковая дорожка MP3 закодированная со скоростью 320 000 бит в секунду (320 kbps) значительно лучше кодированной в 128 kbps. Дорожки скоростью меньше 128 слушать вообще невозможно.
Для чего обрабатывается сигнал?
Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.
Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.
В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.
Чем отличается непрерывный сигнал от дискретного
На первый взгляд отличия в сигналах можно не различить. Оба передаются в виде электрических импульсов по проводам или электромагнитными волнами в эфире. Преобразовываются в звук и изображение, выводятся на динамики и экран. Но разница существенна. Отличие аналогового сигнала от цифрового обусловлено особенностями обработки и передачи данных.
Аналоговые данные не кодируются и не шифруются, просто отображаются в электрические или электромагнитные импульсы. Приёмник преобразовывает импульсы в полном соответствии с полученным сигналом. Передаваемый и принимаемый импульс многогранен и характеризуются постоянным плавным изменением с течением времени. Величина и частота определяют параметры информации. Примером может быть соответствие определённого цвета экрана заданному напряжению. С течением времени цвета плавно меняются следуя изменению напряжения.
Казалось бы, природное происхождение, простота генерации, передачи и приёма благоприятствуют использованию аналогового сигнала. Но в дело вмешиваются электрические и электромагнитные помехи. Это могут быть электромагнитные наводки от электрических сетей, работающих механизмов, рельеф местности, грозы, бури на солнце, шумы создаваемые работой передающего и принимающего оборудования, прочие. Они изменяют плавную кривую. На приёмник информация поступает с изменениями. Шипение, хрипы и искаженное изображение обычная история для аналоговой связи.
Цифровая технология использует совсем иной принцип передачи. Аналоговые данные сначала кодируются и только потом передаются. Кодировка заключается в описании непрерывной кривой аналоговой информации. В каждый конкретный момент времени, передаваемый импульс имеет значение единицы или нуля, и определенная последовательность битов отображает всю полноту оригинальной картинки или звука.
Дискретный сигнал как азбука Морзе, только вместо точек и тире — чёткие биты. Ничего более, шумы и помехи им не мешают. Цифровой информации главное дойти до цели. Цифры без примесей передадут данные и без изменений перевоплотятся в звук и цвет. Но слабый сигнал может не донести полную картину. Как пример — пропадание слов или изображения полностью. Поэтому сотовые передатчики, устанавливают как можно ближе друг от друга, также используют повторители.
Примером непрерывных и дискретных сигналов могут служить старая проводная и новая сотовая связь. Через старые АТС иногда невозможно было разговаривать с соседним домом. Шумы и плохое усиление сигнала мешали слышать друг друга. Что бы вести полноценную беседу, приходилось громко кричать самому и прислушиваться к собеседнику. Другое дело сотовая связь основанная на цифровой технологии. Звук закодирован и хорошо передаётся на далёкие расстояния. Отчетливо слышно собеседника даже с другого континента.
Оба вида связи не лишены недостатков, а ключевыми отличиями являются:
- Аналоговый подвержен помехам и поступает с искажениями. В то время как цифровой доходит полностью без искажений или отсутствует вовсе.
- Принять или перехватить аналоговое вещание может любой приёмник такого принципа. Дискретная передача адресована конкретному адресату, кодируется и мало доступна к перехвату.
- Объём передаваемых данных у аналоговой связи конечен, поэтому она практически исчерпала себя в передаче теле сигнала. Напротив с развитием технологии преобразования аналоговой информации в цифровой код растут объемы и качество трансляции. Например, главным отличием цифрового от аналогового телевидения является превосходное качество изображения.
Цифровая технология выигрывает по всем показателям. Споры идут только среди любителей музыки. Многие меломаны и звукорежиссеры утверждают, что могут различить аналоговый оригинал и цифровую копию. Однако большинство слушателей этого сделать не в состоянии. Да и с развитием цифровых систем аналоговые данные кодируются точнее. Оригинальное звучание и цифровая копия делаются практически неразличимым.
Цифровой сигнал
Цифровой сигнал является особым потоком данных, он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.
Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.
Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.
Как аналоговый сигнал преобразуется в цифровой и наоборот
Первой в цифровую форму преобразовали математическую, физическую и компьютерную информацию. Описать формулы и расчеты не составило труда. А вот для преображения аналоговой действительности в цифровые массивы уже потребовались специальные устройства. Ими стали аналого-цифровые преобразователи или сокращенно АЦП. Они предназначены для преобразования различных физических величин в цифровые коды. Обратное действие совершают устройства ЦАП.
Любые цифровые передатчики и приёмники оснащены такими преобразователями. Например, сотовому телефону, поступивший звук необходимо обработать и передать в оцифрованном виде. В то же время необходимо принять от другого абонента код, преобразовать и передать напряжение на динамик. Так же и с изображением на смартфонах и в телевизорах. В любом случае первоначальной информацией выступает напряжение.
Существует много видов АЦП, но самыми распространёнными являются следующие:
- параллельного преобразования;
- последовательного приближения;
- дельта-сигма, с балансировкой заряда.
Преобразования в АЦП понятийно связаны с измерением и сравнением. Кодировка, это процесс сравнения полученных от источника данных с эталоном. То есть полученная аналоговая величина сравнивается с эталонной (с заданным напряжением). Эталоном выступает информация о конкретном цвете, звуке и т.п. Она соответствует заложенным в устройство представлениям о преобразуемом сигнале. Потом данные эталонной величины кодируются для передачи. Во время аналого-цифровой обработки физических превращений сигнала не происходит. С аналогового делается цифровой матрица (модель).
Упрощенно работу любого АЦП можно представить так:
- Измерение через определенные интервалы времени амплитуды напряжения.
- Сравнение с эталоном и формирование данных.
- Отгрузка оцифрованных сведений об изменениях амплитуды на передатчик.
Качество передаваемой информации зависит от двух параметров — точности и частоты измерений. Чем точнее измеряется и зашифровывается входящее напряжение, тем качественней передаваемая информация. Поэтому, имеет большое значение, сколько бит может зашифровать преобразователь. Чем плотнее информационный поток, тем точней передача данных. Это выражается в красках экрана, контрастности картинки и чистоте звука. Следующим важным показателем является дискретизация, то есть частота измерений. Чем чаще, тем меньше провалов в измерениях и необходимости сглаживания. В совокупности, чем чаще и точнее преобразователь может измерять и обрабатывать полученное напряжение, тем он лучше.
Виды сигналов
Существует несколько типов классификации имеющихся сигналов. Рассмотрим, какие бывают виды.
- По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
- По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
- В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.
Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное — немного подумать и вспомнить школьный курс физики.
Как выглядят спектры аналогового и дискретного сигнала
Изображение сигналов можно представить как две функции. На рисунке наглядно представлено, чем отличается непрерывный сигнал от дискретного. Напряжение исходного изменяется плавно, обработанного прерывисто. Спектр дискретного периодически ступенчато совпадает с непрерывным.
Изменения дискретного происходят резко, через определённый период времени. Уровень в цифровой системе зашифровывается и любую величину напряжения описывают двоичным кодом. От частоты измерений зависит сглаженность преобразования и оригинальность передаваемых данных. Чем точнее описан уровень сигнала и чем чаще проводится и обрабатывается измерение, тем точнее совпадает спектр начального и переданного сигналов.
Дискретная величина
Дискретность какой-либо величины подразумевает, что ее значения можно пронумеровать, измерить и посчитать.
Такими величинами оперирует, например, экономика. Различные экономические показатели фиксируют и рассчитывают с определенной периодичностью (например, раз в месяц, квартал, полугодие и т.д.). Таким образом, изменение показателей происходит не непрерывно во времени, а как бы «скачками» через установленные интервалы времени.
Какие системы связи используют цифровой сигнал а какие аналоговый
Несмотря на архаичность аналоговая технология ещё используется для телефонной и радио связи. Многие проводные сети до сих пор остаются аналоговыми. В основном это традиционные телефонные линии местных операторов. Но, для магистральной передачи данных связи уже повсеместно используют цифровые каналы. Так же аналоговая технология применяется в простых и дешёвых переносных радиостанциях.
Во всех вновь создаваемых системах используют цифровую технологию обработки сигнала. Это оптоволоконные и проводные линии, сигнализация и телеметрия, военная и гражданская промышленная связь. И конечно же на цифровое вещание переходит телевидение. Аналоговый способ передачи данных исчерпал себя. На смену пришла новая высококачественная и защищенная связь.
Применение цифрового сигнала
Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.
В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.
Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.
Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.
Список книг помогающих разобраться в аналоговых и цифровых сигналах
Более подробно изучить и сравнить принципы обработки и передачи данных можно прочитав следующую литературу:
- Сато Ю. Обработка сигналов. Первое знакомство. / Пер. с яп.; под ред. Ёсифуми Амэмия. — М: Изд-кий дом «Додэка-XXI», 2002. Книга даёт основы знаний о способах ЦОС. Адресована радиолюбителям, студентам и школьникам, только начинающим изучение систем передачи данных.
- Введение в цифровую фильтрацию /под ред. Р. Богнера и А. Константинидиса; перевод с англ. — М: Изд-во «Мир», 1977. В этой книге популярно и доступно изложена информация о различных системах обработки данных. Сравниваются аналоговая и цифровая системы, описаны плюсы и минусы.
- Основы цифровой обработки сигналов: Курс лекций /Авторы: А.И. Солонина, Д.А. Улахович, С.М. Арбузов, Е.Б. Соловьев, И.И. Гук. — СПб: Изд-во «БХВ-Петербург», 2005. Книга написана по курсу лекций для студентов ГУТ им. Бонч-Бруевича. Изложены теоретические основы обработки данных, описаны дискретные и цифровые системы разных способов преобразования. Предназначена для изучения в вузах и повышения квалификации специалистов.
- Сергиенко А.Б. Цифровая обработка сигналов (второе издание) — СПб: Изд-во «Питер», 2006. Электронный учебно-методический комплекс по дисциплине «Цифровая обработка сигналов». Представлены курс лекций, лабораторный практикум и методические рекомендации по самостоятельной работе. Предназначена для преподавателей и самостоятельного изучения для студентов уровня подготовки бакалавр.
- Лайонс Р. Цифровая обработка сигналов. 2-е изд. Пер. с англ. – М.: ООО «Бином-Пресс», 2006. Книга представляет подробную информацию о ЦОС. Написана понятным языком и снабжена большим количеством иллюстрации. Одна из самых простых и понятных книг на русском языке.
Старая добрая аналоговая связь быстро сдаёт позиции. Несмотря на модернизацию и улучшения, возможность обмена данными достигла предела. К тому же, остались старые болезни – искажения и шумы. В то же время цифровая связь лишена этих недостатков, и передаёт большие объёмы информации быстро, качественно, без ошибок.
Сигнал
Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.
В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.
Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.
В статье охарактеризованы виды аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.
Дискретные входы
Дискретные (цифровые) входы программируемого логического контроллера применяются для выполнения самых разных задач автоматизации технологического процесса, начиная от мониторинга состояния различных датчиков, таких как всевозможные кнопки, тумблеры, концевые выключатели, термостаты и прочее, до использования их при создании промышленных панелей управления – ПСП-панелей, клавиатур, аварийных выключателей, а также при приеме информации от исполнительных механизмов – актуаторов, катушек мощных контакторов и реле. По сути, к дискретному входу ПЛК можно подключить любое устройство с выходом типа «реле» или «открытый коллектор».
Дискретный вход программируемого логического контроллера может работать только с низким или высоким уровнем сигнала. Однако некоторые устройства и приборы имеют более двух состояний, соответствующих логическим нулю и единице. Для подключения таких устройств используют сразу несколько дискретных входов. Например, автоматические электронные весы, которые могут контролировать пороги допуска, имеют 2 выхода, соответствующих значениям «меньше нормы» и «больше нормы». Вес объекта таким образом определяется двумя битами информации: 01 – «меньше», 00 – «норма», 10 –«больше», 11 – «неисправность прибора».
Дискретный вход ПЛК, как правило, включает в себя индикатор состояния (светодиод), гальваническую развязку и защиту от неверного подключения. У некоторых контроллеров диоды индикации расположены до гальванической развязки, что дает возможность пользователю проводить диагностику работы внешних цепей до включения контроллера. Помимо этого, каждый дискретный вход оснащен аналоговым фильтром, подавляющим высокочастотные помехи и верхние гармоники спектра входного сигнала. Частота среза фильтра согласована с программным быстродействием, определяющимся типовым временем рабочего цикла ПЛК. Длительность импульса, который можно надежно зафиксировать дискретным входом общего назначения, составляет 2…3 мс. Обобщенная структурная схема дискретного входа ПЛК приведена на рисунке 3.
Рис. 3. Обобщенная структурная схема дискретного входа ПЛК
Несмотря на то что функционал и алгоритм работы дискретного входа достаточно просты, его схемотехническая реализация оказывается не столь тривиальной задачей, особенно если учесть, что в современных решениях одновременно требуются компактные размеры, приемлемая цена, высокая надежность, а также минимальные значения потребления.
Дискретные выходы
Простейший дискретный выход программируемого логического контроллера представляет собой контакты реле и способен выдавать сигнал, принимающий значения логических нуля или единицы. Такой выход относительно прост в реализации и применении, но имеет характерные для реле недостатки: ограниченный ресурс работы, достаточно невысокое быстродействие и так далее. Решением, которое могло бы заменить такой подход, является использование электронного силового элемента, который выполняется по бесконтактной схеме (транзистор – для нагрузки постоянного тока, симистор – для нагрузки переменного тока).
Согласно ГОСТ IEC 61131-2-2012, к которому мы уже обращались ранее, «цифровой выход (digital output) – это устройство, которое преобразует однобитовое двоичное число в сигнал с двумя состояниями».
Основными характеристиками цифровых выходов являются:
- номинальная токовая нагрузка 0,1/0,25/0,5/1/2 А, при этом максимальный ток составляет 0,12/0,3/0,6/1,2/2,4 А;
- тип выхода – незащищенный или устойчивый к состоянию короткого замыкания.
Стандартная схема реализации дискретного выхода показана на рисунке 16.
Рис. 16. Стандартная схема реализации дискретного выхода
Датчики тока, последовательно соединенные с нагрузкой, непрерывно контролируют ток, поступающий на нагрузку, и сообщают о наличии избыточных токов контроллеру.
Величина протекающего в цепи тока является одним из ключевых параметров безопасности. Дискретные выходы сконструированы с использованием NPN-транзисторов со встроенными диодами для защиты от перенапряжения. Система гарантирует, что при включении цифровых выходов ПЛК ток от источника питания всегда находится в пределах заданного рабочего диапазона контроллера. Токочувствительный усилитель может защитить цифровые выходы от перегрузки по току, обеспечить диагностику, чтобы устранить неисправные условия нагрузки и предупредить о сбое системы.
Однако цифровые выходы ПЛК могут быть напрямую привязаны к устройствам, работающим с большими токами, превышающими допустимый ток выхода ПЛК, такими как стартеры, лампы и прочее. В таком случае необходимо использование дополнительного полевого транзистора для управления потоком тока от источника 24 В до нагрузки. На рисунке 17 показано подключение дискретного выхода ПЛК ко внешнему низковольтному полевому транзистору.
Рис. 17. Схема реализации дискретного выхода с применением дополнительного полевого транзистора
Одним из недостатков такого подхода является использование внешнего дискретного компонента (полевого транзистора), что увеличивает габариты конечного решения и его стоимость. Исключением полевого транзистора из схемы может послужить применение токочувствительного усилителя INA240, разработанного компанией Texas Instruments.
INA240 – это высокоточный двунаправленный усилитель тока с малым входным смещением и дрейфом усиления по температурному диапазону, что делает его идеальным устройством для измерения токов на дискретных цифровых выходах ПЛК. Микросхема INA240 способна работать с сигналами до 400 кГц, имеет ток потребления 2,6 мА, напряжение питания 2,7…5,5 В и способна работать при температуре -40…125°C. Кроме того, INA240 обладает лучшим в отрасли сочетанием малого смещения (5 мкВ), дрейфа смещения (50 нВ/°C), ошибки и дрейфа усиления (0,05% и 0,5 ppm/°C соответственно). Также данное решение обеспечивает подавление синфазных сигналов переменного тока – 93 дБ на частоте 50 кГц.
INA240 выпускается в 8-выводных корпусах TSSOP и SO, а для оценки ее возможностей доступны модули TIDA-00909 и TIDA-00913 (рисунок 18).
Рис. 18. Внешний вид модуля TIDA-00909/00913
Выводы кратко
Аналоговый метод передачи данных — это пережиток прошлого. Но полностью отказаться от этого типа сигналов человечество не может по одной простой причине — вся природная информация распространяется этим способом. И только в этом виде человек может воспринимать данные.
Ученые придумали достойный ответ: в виде дискретного выражения материалов. С помощью специальных преобразователей звуки и изображения кодируются. В таком виде передаются конечному потребителю, после чего раскодируются обратно в непрерывный сигнал.