А теперь давайте поговорим о полевых транзисторах. Что можно предположить уже по одному их названию? Во-первых, поскольку они транзисторы, то с их помощью можно как-то управлять выходным током. Во-вторых, у них предполагается наличие трех контактов. И в-третьих, в основе их работы лежит p-n переход. Что нам на это скажут официальные источники?
Полевыми транзисторами
называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля.
(electrono.ru)
Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов — управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов, как мы помним, выходным током управляет входной ток базы.
Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название — униполярные
. Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).
Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два.
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
Красный щуп подключаем к ножке Б и проверяем сопротивление черным щупом прикасаясь к выводам К и Э , поочередно , оно должно быть минимальным. Если же вам что-то непонятно, пишите мне!
Как измерить коэффициент усиления транзистора мультиметром
- Максимальный ток стока
при фиксированном напряжении затвор-исток. - Максимальное напряжение сток-исток
, после которого уже наступает пробой. - Внутреннее (выходное) сопротивление
. Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток — константа). - Крутизна стоко-затворной характеристики
. Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе. - Входное сопротивление
. Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором. - Коэффициент усиления
— отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.
Полевой транзистор с управляющим p-n-переходом
Можно провести следующую аналогию: p-n переход — это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).
Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.
Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.
Условные графические изображения полевых транзисторов приведены на рисунке (а
— с каналом p-типа,
б
— с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.
Статические характеристики полевого транзистора с управляющим p-n-переходом
Поскольку в рабочем режиме ток затвора обычно невелик или вообще равен нулю, то графики входных характеристик полевых транзисторов мы рассматривать не будем. Перейдем сразу к выходным или стоковым. Кстати, статическими их называют потому, что на затвор подается постоянное напряжение. Т.е. нет необходимости учитывать частотные моменты, переходные процессы и т.п.
Выходной
(
стоковой
) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток.
На рисунке — график слева.
На графике можно четко выделить три зоны. Первая из них — зона резкого возрастания тока стока. Это так называемая «омическая» область
. Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.
Третья зона графика — область пробоя
, чье название говорит само за себя.
С правой стороны рисунка показан график еще одной важной зависимости — стоко-затворной характеристики
. Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.
Радио-как хобби
Этот стенд позволяет определить такие параметры полевых транзисторов с p-n переходом как начальный ток стока и напряжение отсечки.
Эти параметры приходится определять довольно часто в радиолюбительской практике, когда возникает необходимость подбора полевого транзистора именно по этим критериям.
Схема этого стенда-испытателя полевых транзисторов целиком и полностью позаимствована с сайта С. Беленецкого.
Перейдя по ссылке выше, можно получить более подробную информацию о таких параметрах полевых транзисторов как напряжение отсечки Uотс и начальный ток стока Iнач.
Стенд собран по очень простой схеме:
Здесь даже и описывать нечего.
Как уже указывалось, этот стенд позволяет измерить напряжение отсечки Uотс и начальный ток стока Iнач полевых транзисторов с p-n переходом как с p-каналом (КП103) , так и с n-каналом (КП303,307, BF245 и подобные)
Стенд питается напряжением 9 В, причем, указанная на схеме полярность питания используется при работе с полевыми транзисторами с n-каналом (КП303,307, BF245 и подобные). Для работы с транзисторами с р-каналом полярность питания необходимо изменить на ОБРАТНУЮ.
Стенд подключается к цифровому мультиметру, который работает в режиме измерения постоянного напряжения.
После подачи питания стенд сразу измеряет напряжение отсечки Uотс полевого транзистора, установленного в панельку. Для измерения начального тока стока Iнач достаточно просто нажать на кнопку. При этом показания мультиметра нужно разделить на 10, согласно формуле, указанной на схеме стенда.
Стенд собран на миниатюрной печатной платке размерами 25х35 мм. Внешний вид платы с указанием элементов представлен ниже:
Детали здесь применены недефицитные.
Один тонкий момент-поскольку номинал резистора R2 10 Ом входит в расчетную формулу для начального тока стока-именно на 10 делим показания, то его нужно подобрать поточнее. Я выбрал из своих запасов резистор с номиналом 10,4 Ома.
В качестве панельки для транзисторов использована панелька для микросхем , у которой отпилено всё лишнее, и оставлено только пять контактов.
Теперь о том, как использовать этот стенд для определения параметров полевых транзисторов.
Несколько реальных измерений:
Устанавливаем транзистор КП302Б в панельку. Подключаем к стенду цифровой мультиметр в режиме измерения постоянных напряжений на пределе 20 В. Подаем питание и сразу считываем напряжение отсечки транзистора в вольтах:
Как видно, напряжение отсечки этого экземпляра КП302Б составляет 3,09 В.
Нажимаем на кнопку и считываем начальный ток стока:
Прибор показывает 0,34. Это падение напряжения на резисторе R2 (см. схему выше).
Начальный ток стока равен Ic=0,34 В/10 Ом=0,034 А или 34 мА. В общем, чтобы не путаться, достаточно просто мысленно отбросить все символы слева от запятой и получим просто 34 мА.
Измеряем параметры транзистора КП103К в пластиковом корпусе.
Этот транзистор имеет канал р-типа. Поэтому полярность питания изменяем на обратную. Мультиметр я переключил на предел измерения 2000 мВ, потому что на пределе 20 В считывать показания не очень удобно для этого типа транзистора.
Включаем питание и видим напряжение отсечки 1314 мВ, или 1,34 В.
Нажимаем на кнопку и считываем значение начального тока стока:
Тестер показал 18 мВ, делим на 10 (резистор R2) и получаем начальный ток стока Ic=1,8 мА.
Получился простой, но достаточно полезный во многих случаях приборчик.
Печатная плата со стороны проводников:
Небольшое видео о работе этого стенда-измерителя параметров полевых транзисторов:
Ограничения
- При работе с малосигнальными МДП транзисторами требуется быть предельно осторожным относительно статического электричества, чтобы не поубивать их во время такой проверки.
- МДП транзисторы, работающие в режиме обеднения (со встроенным каналом), надо проверять несколько иначе. Полезность данной статьи сей факт никак не уменьшает, и вот почему: вероятность того, что у вас окажется такой девайс, стремится к бесконечно малой величине. Если же вы справились-таки раздобыть Depletion Mode MOSFET — вам эта статья уж и подавно не нужна ?
- В случае, если вам повезло стать обладателем раритетного МДП устройства без структурного диода, то, соответственно, описанная ниже проверка структурного диода смысла не имеет.
- Возможно, напряжения на щупах мультиметра не хватит для надёжного открытия транзистора. Тогда можно взять 9-вольтовую батарейку «крона» с последовательно включенным резистором не менее 1КОм и использовать этот источник для заряда затвора.
1) Затвор должен быть изолирован от других выводов
- а) Подключаем чёрный «-» щуп мультиметра к выводу стока (фланец) или выводу истока, красным «+» щупом касаемся вывода затвора: прибор показывает разрыв цепи. Отсоединяем щупы в обратном порядке: сначала от затвора, потом от истока или стока. Следим, чтобы больше ничего не дотрагивалось до вывода затвора.
- б) Подсоединяем красный щуп мультиметра к выводу стока или истока, чёрный — к затвору: прибор показывает разрыв цепи. Отсоединяем щуп сначала от затвора.
Разряжаем ёмкость затвора: берём транзистор за фланец крепления радиатора (вывод стока), если такового нет, то сначала дотрагиваемся до вывода стока или истока, потом нежно обнимаем все три ножки ?
2) Проверяем структурный диод.
Для этого проверяем на исправность диод, что между стоком и истоком, так же, как мы бы прозванивали обычный кремниевый диод.
- а) В прямом включении падение как на обычном кремниевом диоде: мультиметр должен показать падение напряжения в диапазоне приблизительно от 0.4 до 0.7 Вольт.
- б) В обратном включении — диод заперт.
3) Заряжаем ёмкость затвора — канал открыт.
Для n-канальных МДП транзисторов (а таковых подавляющее большинство):
В случае p-канального МДП транзистора полярность соответственно меняем на обратную.
Для этого щуп, только что коснувшийся затвора, переносим на сток. Прибор должен показать небольшое падение напряжения, или даже короткое замыкание, некоторые приборы при этом радостно пищат. Заряд с затвора исправного транзистора стекает исключительно медленно — канал должен оставаться открытым довольно долго.
4) Разряжаем затвор.
Для этого можно держась за фланец или вывод истока коснуться затвора. Можно это сделать пальцами, можно проводом, а можно повторить процедуру заряда ёмкости затвора, но приложив обратную полярность напряжения.
Полевые транзисторы. For dummies / Хабр
Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором транзистор с индуцированным инверсным каналом. Если же вам что-то непонятно, пишите мне!
Как проверить полевой транзистор и снять его основные характеристики?
В последнее время в радиолюбительской практике всё чаще встречаются устройства, построенные на полевых транзисторах. Причиной этого является ряд полезных качеств полевиков, таких как: высокое входное сопротивление, низкий уровень собственных шумов, малая проходная ёмкость, высокая температурная стабильность и т. д. и т. п.
Казалось бы — вот оно счастье! Ан нет — главным ограничением при использовании любых полевых транзисторов является разброс параметров. Эти параметры индивидуальны для каждого конкретного экземпляра и могут существенно различаться даже у однотипных полевых транзисторов из одной партии.
В разных источниках можно найти всевозможные описания измерителий параметров ПТ, но они либо сложны, либо представляют собой простейшие тестеры для определения начального тока стока и напряжения отсечки. Предлагаемый к рассмотрению довольно простой прибор позволяет измерять величину напряжения затвор-исток при различных (задаваемых) токах стока. Это даёт возможность не только сразу и точно рассчитать номиналы резисторов, задающих режим работы каскада, но и снять вольт-амперные характеристики полупроводника, а при выполнении пары простейших манипуляций с калькулятором — вычислить крутизну передаточной характеристики. Объектами для снятия характеристик могут быть как JFET-транзисторы со встроенным p-n переходом, так и MOSFET транзисторы обогащённого типа. Параметры считываются при помощи внешнего вольтметра или мультиметра (наличие которого предполагается у каждого радиолюбителя) в количестве — одна штука.
Рис.1 Схема устройства для измерения характеристик полевых транзисторов
Представленный на Рис.1 измерительный прибор довольно универсален и адаптирован для работы с любыми полевыми транзисторами, для которых необходимо как положительное смещение затвора относительно истока, так и отрицательное. С учётом различной проводимости ПТ таких типов полупроводников набралось 4 штуки: JFET n-типа, JFET p-типа, MOSFET n-типа и MOSFET p-типа. Для того, чтобы избежать обустройства сложной коммутации в устройстве было решено под каждый вид полевика использовать отдельные клеммы подключения.
По большому счёту, схема представляет собой линейный стабилизатор тока. Токовым датчиком здесь является пара резисторов R3, R5 (или R4, R6), суммарное сопротивление которой рассчитывается исходя из формулы R ≈ 0,6/Iнагр . При увеличении тока через испытуемый ПТ падение напряжения на датчике растёт. При достижении им значения 0,6В транзистор T2 начинает открываться, уровень напряжения на затворе ПТ падает, ток уменьшается. Таким образом происходит стабилизация Iс полевого транзистора.
Поскольку для нормальной работы n-канального JFET транзистора значение Uзи должно находиться в отрицательной области, напряжение на его истоке зафиксировано на уровне 5,2В посредством делителя R1, R2 и эмиттерного повторителя Т1. Для n-канального MOSFET транзистора значение Uзи должно находиться в положительной области, поэтому его исток посажен на землю.
Для р-канальных транзисторов всё происходит аналогичным образом, но с обратной полярностью, для чего схема управления на транзисторах Т3 и Т4 перевёрнута относительно питания и земли.
Как было сказано, регулировка тока стока тестируемого транзистора задаётся изменением величины сопротивления токового датчика. Для удобства пользования прибором весь диапазон регулировки тока разбит на 2 поддиапазона: 0,2…3мА и 2…35мА. Для того чтобы избежать необходимости использования дополнительного измерительного прибора, потенциометры следует снабдить шкалой и проградуировать. Ввиду того, что далеко не каждый JFET транзистор в состоянии выдать ток истока — 35мА, градуировку лучше выполнять с каким-нибудь не сильно мощным MOSFET транзистором, например, MOSFET n-типа из серии 2N7000 — 2N7002. Далее всё просто: 1. Установить полевой транзистор; 2. В разрыв между его стоком и плюсом источника питания временно включить амперметр; 3. Нанести на шкалу резисторов отметки, соответствующие показаниям прибора в обоих поддиапазонах изменения тока.
Как пользоваться прибором?
1. Начальный ток стока полевого транзистора (только для JFET-ов) — это ток стока при Uзи = 0. Крутим потенциометр, пока вольтметр не покажет Uзи = 0В. Показания на шкале потенциометра и будут являться искомым значением начального тока стока. В принципе этот параметр имеет практический смысл только при расчёте каскадов с общим истоком, в которых исток без резистора посажен напрямую на землю (или шину питания для р-типа).
2. Напряжения отсечки полевого транзистора — это напряжение между затвором и истоком, при котором ток стока достигает заданного низкого значения (10мкА…1мА). Параметр для аналоговой электроники мало информативный, а для switch MOSFET-ов задаётся при токе 250мкА и выше — поэтому 200мкА, выдаваемые прибором для измерения Uзи_отс, вполне достаточны для практического использования.
3. Напряжения Uзи при заданном токе стока — это главный параметр для расчёта усилительного каскада на полевом транзисторе. Критериев выбора значения тока стока может быть множество, как с точки зрения достижений необходимой нагрузочной способности, так и других факторов, таких как: быстродействие, шумовые характеристики, энергопотребление, стабильность параметров и т. д. Исходя из этих критериев, разработчик, как правило, заранее знает при каком токе будет работать тот или иной каскад на ПТ. Поэтому и тут всё очень просто: устанавливаем потенциометром необходимый ток стока и измеряем вольтметром Uзи. Как дальше (с учётом снятых параметров) рассчитать элементы каскадов на полевых транзисторах мы подробно рассмотрели на страницах ссылка на страницу 1 и ссылка на страницу 2.
4. Крутизна передаточной характеристики — немаловажный параметр для расчёта коэффициента усиления каскада на полевом транзисторе. Поскольку существует довольно сильная зависимость крутизны от начального тока стока транзистора, то и измерять её надо в непосредственной близи от заданного тока стока. Предположим, что каскад будет работать при токе Iс=2мА. Тогда измерения напряжений Uзи можно провести при токах 1,5 и 2,5 мА, а значение крутизны вычислить по формуле S = ΔIc/ΔUзи (мА/В).
Возможные сюрпризы
Подавляющее большинство неисправностей МДП транзисторов так или иначе связано с пробоем изолятора затвора. Проявляться это может как вполне измеримой утечкой в цепи затвора, так и в постоянно открытым или наоборот закрытым состоянии канала, без малейшего намёка на пробой собственно затвора.
Разрушение кристалла при перегрузках часто сопровождается таким фейерверком, что ничего мерять там уже и не надо.
Какое освещение Вы предпочитаете
ВстроенноеЛюстра
К сожалению, бывают ещё и скрытые дефекты, деградация качества прибора, вызванные пробоем и никак не проявляющиеся в тестах, описанных в данной статье. Недавно я сам попался на такой дефект при работе с маленькими полевиками (2n7002). Что тут можно посоветовать:
You May Also Like
Сетевой фильтр для аудио — своими руками
Проверка и подбор полевых транзисторов
О резисторах
Как проверить полевой транзистор КП303? (Электретный микрофон не робит
Может есть такой способ? А то я не могу заставить работать электретный микрофон МКЭ — 30. Не могу и всё тут. Всяко перепробовал. Этих КП303 у меня 5 штук. но в этих пробах я их возможно убил.
Их ведь заземлять надо при пайке, закорачивать все четыре ножки. статическое напряжение с себя убирать. Вот и не знаю,живые ли они. Чтобы дожать микрофон. Заколебал он меня. Уж скока лет не запускается.
Сдох сам элемент. У них ограниченный срок жизни. Хотя электрет должен «жить» 30 лет.
Сам капюль?! А я думал, что там всего лишь две мембраны, точно расположенные и дистанцированные друг от дружки. Это ж. не механизм. чтобы ломаться.
Но головка(капсюль) действительно старая. Да и размер гораздо больше, чем нынешние, которые продаются. Я предполпгпл, что у этого, из-за размера и частотка получше.
И еще, заоднем, спрошу. Этих транзисторов в наших радиодеталях нету. Не торгуют они отечественными деталями. Но не об этом
Я ещё хотел купить самые экономичные синие светодиоды. А там только одного типа. 8 рублей стоит. тип светодиода на чеке значится как GNL 5013BW (хотя. продавщица мне продиктовала как L 5013BC)
Это экономичный? Мне надо в схему питающейся от кроны.
Это у чисто конденсаторных. А у электретных. //cxem.net/sprav/sprav96.php
PS. Чем меньше расстояние между мембраной и электродом, тем меньше диаметр капсюля. Технологически трудная задача. Для наших алкашей.
«Электретные микрофоны по принципу работы являются теми же конденсаторными, но постоянное напряжение в них обеспечивается зарядом электрета, тонким слоем нанесённого на мембрану и сохраняющим этот заряд продолжительное время (свыше 30 лет).»
Действительно. что то такое, временное, в них есть. Только про 30 лет наеврное преувеличение. Эхх. значит не заработает. А сейчас такие головки выпускаются? Со свежим зарядом электрета? Да что б побольше диаметром?
Для музыки. Записи голоса и звуков. Частоты хочу, хрусталиков.
Для студийных записей эти ожидания естественно неразумны. Но. хочется послушать. поэкспериментировать.
Да и питание у таких микрофонов 48 вольт. (и нет там отсека для батареек)
Так что. игнорировать качество капсюля, мне кажется, не стоит.
Хотяя. интересны мнения об этом. Может эти капсюли и потенциально хороши. Надо только создать условия для проявления этого потенциала.
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
В случае, если вам повезло стать обладателем раритетного МДП устройства без структурного диода, то, соответственно, описанная ниже проверка структурного диода смысла не имеет. Если же вам что-то непонятно, пишите мне!
Как проверить полевой транзистор?
Если сейчас черным щупом коснуться нижней (G — затвор) ножки, не отпуская красного щупа (Рис.7), и вернуть его на подложку (D — сток), то полевой транзистор закроется и снова будет показывать сопростивление около 500 Ом (Рис.8). Это верно для большинства N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.
В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.
0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».
Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.
Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив
Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!
Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.
Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.
Описание работы
Для проверки первым делом необходимо соединить каждый вывод проверяемого транзистора к соответствующим выводам прибора: сток — к ХЗ, затвора Х4, исток — к Х5.
После нажатия кнопки SA2 активизируется генератор звуковой частоты. Колебания в генераторе возникают в следствии ПОС, которая образуется между истоком и затвором. Для усиления величины ПОС в схеме применен согласующий повышающий трансформатор Т1, имеющий коэффициент трансформации 3,57. Использование ПОС объясняется и тем, что у полевого транзистора коэффициент передачи не более единицы. Включатель SA2 не только подает питание на схему, но и создает первичный импульс тока для запуска звукового генератора.
Отдельные виды полевых транзисторов с довольно высоким напряжением отсечки начинают функционировать не иначе как при таком режиме включения. Но имеется немало видов транзисторов, которые не требуют включения с помощью импульса, после включения напряжения питания они начинают сразу работать. Переключатель SA1 необходим для переключения режима проверки в зависимости от того какой тип (канал типа n или p) полупроводника.
В устройстве использован головной телефон (динамическая головка) ВА1, который применяется для прослушивания звукового фона и проверки работоспособности транзистора. Звуковой сигнал в головном телефоне появляется при рабочем полевом транзисторе и отсутствует при его неисправности. Питается данное устройство от 3 вольт, это может быть стабилизированный источник питания или же 2 пальчиковые батарейки
Проверка работоспособности полевого транзистора
Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.
Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):
- Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
- Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
- Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
- Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
- Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.
Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.
Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.
Рис 5. IGBT транзистор SC12850
Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.
В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
Для биполярных приборов p n p проводимости открытому состоянию будет соответствовать подключение минусового чёрного щупа тестера к выводу базы. Если же вам что-то непонятно, пишите мне!
Простейший пробник для проверки полевых транзисторов (Полевых Мышей.)
В данной статье будет представлена, на мой взгляд, самая простейшая, но не менее эффективная схема Полевых Мышей (полевых транзисторов). Эта схема я думаю, по праву займет одно из своих лидирующих месть в интернете, по простоте и надежности сборки. Так как ни мотать, ни сгорать тут просто нечему… Количество деталей минимум. Причем схема не критична к номиналам деталей… И может быть собрана практически из хлама, при этом не теряя свою работоспособность…
Многие скажут, зачем какой то- пробник для транзисторов? Если все можно проверить обычным мультимитром… И в какой то степени они будут правы… Что бы собрать пробник надо минимум иметь паяльник и тестер… Для проверке все тех же диодов и резисторов. Соответственно ,что если есть тестер то пробник не нужен. И да и нет. Тестером (мультимитром) конечно можно проверить полевой транзистор (полевую мышь) на работоспособность… Но мне кажется это сделать намного сложнее чем проверить ту же полевую мышь пробником… Не буду объяснять в данной статье как работает полевая мышь (полевой транзистор). Так, как для специалиста это все давно известно, и не интересно, а для новичка всё сложно и замудрено. Так что было решено обойтись без занудных объяснений принципа работы полевой мыши (полевого транзистора).
Итак, схема пробника, и как им проверить полевую мышь (полевой транзистор) на живучесть.
Собираем данную схему, хоть на печатной плате (печатка прилагается в конце статьи). Хоть навесным монтажом. Номиналы резисторов могут отличатся примерно на 25% в любую сторону.
Кнопка любая без фиксации.
Светодиод можно поставить хоть биполярный, двухцветный, хоть два встречно параллельных. Либо даже просто один. Если вы планируете проверять транзисторы только одной структуры.. Только N канального типа или только P канального типа.
Схема собрана для полевых мышей N канального типа. При проверке транзисторов P канального типа придется поменять полярность питания схемы. Поэтому в схему был добавлен еще один встречный светодиод, параллельно первому.. В случае если понадобится проверить полевую мышь (полевой транзистор) P канального типа.
Многие наверно заметят сразу, что в схеме отсутствует переключатель полярности питания.
Это сделано по нескольким причинам.
1 Такого подходящего переключателя не оказалось в наличии.
2 Просто, чтобы не запутаться в каком положении должен находиться переключатель при проверки соответствующего транзистора. Мне чаще попадают транзисторы N канальные, чем P канальные. Поэтому при необходимости мне не сложно просто поменять проводки местами. Для проверки P канальных полевых мышей (полевых транзисторов).
3 Просто для упрощения и удешевления схемы.
Как схема работает? Как проверять полевых мышей на живучесть?
Собираем схему и подключаем транзистор (полевую мышу) К соответствующим клеммам схемы (сток, исток, затвор).
Ничего не нажимая, подключаем питание. Если светодиод не горит уже хорошо.
Идем дальше. Нажимаем на кнопку. Светодиод должен загореться. Что свидетельствует о целостности полевого транзистора (значит полевая мышь жива и здорова).
Если же при правильном подключении транзистора к пробнику ,подаче питания и НЕ нажатой кнопки светодиод загорится… Значит транзистор пробит.
Соответственно если при нажатой кнопке светодиод НЕ горит. Значит транзистор в обрыве.
Вот и вся хитрость. Всё гениально просто. Удачи.
P/S. Почему в статье полевой транзистор, называю полевой мышью? Всё очень просто. Вы когда ни будь встречали в поле транзисторы? Ну так.. Просто. Они там живут, или растут? Думаю, что нет. А вот полевые мыши есть… И тут они наиболее уместны, чем полевые транзисторы.
И почему вас удивляет сравнение полевого транзистора с полевой мышью? Ведь есть же, например сайт радиокот или радиоскот. И многие другие сайты с подобными названиями.. Которые на прямую никакого отношения к живности не имеют… Так что.
Так же считаю, что вполне можно назвать биполярный транзистор, например полярным белым медведем….
И еще хочу выразить огромную благодарность автору этой схемы пробника В. Гончарук.
Поделиться в соц. сетях
Нравится
Транзисторы и их проверка мультиметром; как проверить тестером транзистор, не выпаивая
- Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
- К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
- Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
- В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку.
ИЗМЕРЕНИЕ ПАРАМЕТРОВ ПОЛЕВЫХ ТРАНЗИСТОРОВ
Информацию о некоторых параметрах полевого транзистора можно получить из семейства статических вольт-амперных характеристик. Методика снятия этих характеристик не отличается от аналогичной методики для вакуумных ламп. Самым простым методом является снятие характеристик по точкам. Поскольку схема с общим истоком является типовой, то обычно при снятии вольт-амперных характеристик исток заземляется, а к стоку и затвору подключаются регулируемые источники напряжения соответствующей полярности и измерительные приборы (рис. 9).
Рис. 9. Схема для снятия вольтамперных характеристик ПТ.
Полное семейство выходных вольт-амперных характеристик Iс=f(Uс,п) при Uз.и=const можно получить также с помощью характериографа. При этом на сток полевого транзистора необходимо подавать напряжение развёртки пилообразной формы, а на затвор — ступенчатое напряжение.
Ток насыщения стока Ic0 и напряжение отсечки Uотс принято измерять при напряжении на стоке, равном 10 В, и напряжении на затворе Uз.и=0. Эти параметры характеризуют в то же самое время положение точки перегиба характеристики. Ранее было показано, что
Ic=Ic0(1-Uз.и/Uотс)2
Из этой формулы видно, что параметров Ic0 и Uотс вполне достаточно для построения проходных характеристик прибора.
Параметром, характеризующим усилительные свойства ПТ, является крутизна S.
Для её измерения используем схему, показанную на рис. 9, Резисторами R1 и R2, которые должны быть низкоомными, устанавливают необходимые напряжения на затворе и стоке (обычно желаемый рабочий режим). После этого несколько увеличивают напряжение на затворе и замечают, насколько изменился ток стока. Зная эти изменения, можно определить крутизну, мА/В,
где ΔIc — изменение тока стока, мА; ΔUз.и — изменение напряжения на затворе, В.
Чем меньше приращения указанных величин, тем больше точность измерений.
Определить напряжение отсечки можно в этой же схеме включения [6]. Следует заметить, что точно измерить напряжение Uотс весьма сложно. Это связано с тем, что надо отмечать весьма малые изменения слабого тока. Поэтому предлагается проводить измерение Uотс следующим способом [2]. Определив значение Ic0, отмечают, при каком напряжении на затворе Uз.и ток стока становится равным Iс=0,1Ic0.
Подставив эти значения в выражение (1) для тока стока, получим для данных условий:
Uотс=1,46Uз.и
А.Г. Милехин
Литература:
- Полевые транзисторы. Физика, технология и применение. Пер. с англ. под ред. С. А. Майорова. М., «Советское радио», 1971.
- Севин Л. Полевые транзисторы. М., «Советское радио», 1968.
- Van der Ziel. Proc IRE, 1962, v. 50, p. 1808.
- Van der Ziel. Gate Noise in Field Effects Transistors at Moderately High Freguencies.- «Рroc. IRE», 1963, v. 51, p. 461.
- Гозлинг В. Применение полевых транзисторов. М., «Энергия», 1970.
- Федорин В. Измерение параметров и применение полевых транзисторов. — «Радио», 1969, № 3.
- Вальков А. А., Топчилов Н. А., Колосовский А. В. Кремниевые полевые транзисторы КП102. — «Радио», 1970, № 6.
- Третьяков В. А., Павлова Т. И. Параметры и энергетическое разрешение полевых транзисторов КП303 при низких температурах. — «Приборы и техника эксперимента», 1973, № 2.
PREV CONTEXT
Как проверить транзистор, не выпаивая из схемы
Выпаивание из схемы определенного элемента сопряжено с некоторыми трудностями – по внешнему виду сложно определить, какое именно из них необходимо выпаивать.
Многие профессионалы для проверки транзистора непосредственно в гнезде предлагают использовать пробник. Этот прибор представляет собой блокинг-генератор, в котором роль активного элемента играет сама деталь, требующая проверки.
Система работы пробника со сложной схемой построена на включении 2 индикаторов, которые сообщают – пробита цепь, или нет. Варианты их изготовления широко представлены в интернете.
Последовательность действий при проверке транзисторов одним из таких приборов, следующая:
- Сначала тестируется исправный транзистор, с помощью которого проверяют, есть генерация тока, или нет. Если генерация есть, то продолжаем тестирование. При отсутствии генерации меняются местами выводы обмоток.
- Далее проверяется лампа Л1 на размыкание щупов. Лампочка должна гореть. В случае, если этого не происходит, меняются местами выводы любой из обмоток трансформатора.
- После этих процедур начинается непосредственная проверка прибором транзистора, который предположительно вышел из строя. К его выводам подключаются щупы.
- Переключатель устанавливается в положение PNP или NPN, включается питание.
Свечение лампы Л1 свидетельствует о пригодности проверяемого элемента схемы. Если же начинает гореть лампа Л2, значит есть какие-то неполадки (скорее всего пробит переход между коллектором и эмиттером);
Существуют также пробники с очень простыми схемами, которые перед началом работы не требуют никакой наладки. Они характеризуются очень малым током, который проходит через элемент, подлежащий тестированию. При этом, опасность его вывода из строя практически нулевая.
К такой категории относятся приборы, состоящие из батарейки и лампочки (или светодиода).
Для проверки нужно последовательно выполнить такие операции:
- Подключить к наиболее вероятному выходу базы один из щупов.
- Вторым щупом поочередно касаемся каждого из оставшихся двух выводов. Если в одном из подключений контакта нет, тогда произошла ошибка с выбором базы. Нужно начинать сначала с другой очередностью.
- Далее советуют проделать те же операции с другим щупом (поменять плюсовый на минусовый) на выбранной базе.
- Поочередное соединение базы щупами разных полярностей с коллектором и эмиттером в одном случае должно зафиксировать контакт, а в другом нет. Считается, что такой транзистор исправный.
Тестер исправности полевых транзисторов
Прибор позволяет проверять работоспособность полевых транзисторов с р-п- переходом, с изолированным затвором и встроенным каналом (обедненный, тип), а также одно- и двухзатворных транзисторов с изолированными затворами и индуцированным каналом (обогащенный тип).
Переключателем S3 устанавливают, в зависимости от типа испытуемого транзистора, необходимую полярность напряжения на стоке. Для проверки транзисторов с затвором в виде р-п — перехода и транзисторов с изолированным затвором и встроенным каналом переключатель SI устанавливают в положение Обеднение a S2 в положение Подложка.
Для проверки транзисторов с изолированными затворами и индуцированным каналом переключатель S1 переводят в положение Обогащение, a S2 в положение Подложка для однозатворных и- Затвор 2 для двухзатворных транзисторов.
После установки переключателей в нужные положения к гнездам разъема X1 подключают проверяемый транзистор, включают питание и, регулируя переменными резисторами R1 и R2 напряжения на затворах, наблюдают за изменением тока стока.
Резисторы R3 и R4 ограничивают ток затвора в случае его пробоя или при ошибочной полярности напряжения на затворе (для транзисторов с затвором в виде /?-я-перехода). Резисторы R5 и R6 исключают возможность накопления статических зарядов на гнездах разъема X1 для подключения затворов. Резистор
R8 ограничивает ток, протекающий через миллиамперметр P1. Мост (диоды V1V4) обеспечивает требуемую полярность тока через измерительный прибор при любой полярности питающего напряжения.
Налаживание прибора сводится к подбору резистора R8*, обеспечивающего от клонение стрелки миллиамперметра на последнюю отметку шкалы при замкнутых гнездах Сток и Исток.
В приборе может быть использован миллиамперметр с током полного отклонения 10 мА или микроамперметр с соответствующим сопротивлением шунтирующего резистора R7*. Диоды V1V4 любые, маломощные, германиевые. Номинальное сопротивление резисторов R1 и R2 в пределах 5,1…47 кОм.
Прибор питается от двух батарей «Крона» или от двух аккумуляторов 7Д-0,1.
Данным прибором можно измерять и напряжение отсечки (прибор Р1 должен быть на ток 100 мкА). Для этого параллельно гнездам затвор 1 и Исток устанавливают дополнительные гнезда, к которым подключают вольтметр.
Последовательно с резистором R7* включают кнопку, при нажатии на которую шунтирующий резистор отключается. При нажатой кнопке устанавливают ток стока 10 мкА и по внешнему вольтметру определяют напряжение отсечки.
Как проверить мультиметром полевой транзистор
Полезное видео о том, как прозванивать транзисторы мультиметром:
Такой элемент считается полупроводниковым полностью управляемым ключом. Управление осуществляется электрическим полем, в чем и заключается отличительная особенность таких элементов от биполярных, управляемых током. Электрополе формируется под действием напряжение, которое приложено к затвору относительно истока.
Полевые транзисторы также называются униполярными («УНО» — один). В соответствии с видом канала ток выполняется лишь одним типом носителей: дырками или электронами. Такие элементы разделяются на:
Чтобы протестировать полевой транзистор, нужно присоединить щупы нашему измерителю так же, как при измерении биполярных транзисторов. После этого выбираем режим прозвонки.
- Черным кабелем прикасаемся до «с», красным до «и».
- Смотрим на показания сопротивления встроенного диода. Запомните или запишите значение.
- Открываем переход, то есть красный кабель должен дотронуться до отвода «з».
- Повторно делаем измерение из первого пункта. Значение должно уменьшиться — это указывает на то, что полевик частично открылся.
- Закрываем компонент, то есть присоединяем черный кабель к «з».
- Проделываем пункт первый и смотрим на дисплей. Должно быть исходное значение — это указывает на закрытие, то есть элемент работоспособен.
Чтобы проверить элементы p-типа, проделайте всё так же, но прежде измените полярность щупов.
Теперь вы знаете, как прозвонить транзистор мультиметром.
Стоит отметить, что биполярные транзисторы с изолированным затвором, нужно проверять по вышеописанной схеме для полевого устройства. Учитывайте, что сток и исток — это коллектор и эмиттер.
Мнение эксперта
Стребиж Виктор Павлович, эксперт по освещению и электрике
Любые вопросы задавайте мне, я помогу!
Прибор должен показать небольшое падение напряжения, или даже короткое замыкание, некоторые приборы при этом радостно пищат. Если же вам что-то непонятно, пишите мне!
Схема проверки полевого транзистора n-канального типа мультиметром
Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.
Порядок проверки исправности n-канального транзистора мультиметром следующий:
- Снять статическое электричество с транзистора.
- Перевести мультиметр в режим проверки диодов.
- Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
- Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
- Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
- Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
- Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
- При смене полярности щупов мультиметра величина показаний не должна измениться.
- Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
- При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.
По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.
Это используется при проверке транзистора, когда вначале его открывают напряжением мультиметра (п.6), а затем в течение некоторого времени, пока не разрядилась входная емкость, проводят дополнительные измерения (п.п. 7,8).
Как проверить кп303.
- Расставить щупы по своим местам. Советуем внимательно изучить инструкцию к мультиметру, чтобы знать, какое гнездо для чего предназначено. Обычно для черного щупа предназначено отверстие с надписью «СОМ», а для красного «VΩmA». Если на вашем мультиметре есть такие гнёзда, подключаем.
- Выбираем нужную функцию: проверка сопротивления. Во втором случае можно поставить предел 2кОм. Режим проверки сопротивления, по сути, — омметр. Поэтому, если вы ищите, как проверить транзистор омметром, но у вас нет отдельно такого прибора, смело используйте мультиметр с данной функцией.
Как проверить транзистор мультиметром не выпаивая
Если вы думаете, как проверить транзистор мультиметром на плате, то помните, что таким способом могут определяться только биполярные элементы. Но мы советуем вам и этого не делать, потому что в некоторых случаях p-n переход детали шунтируется низкоомным сопротивлением. Из-за этого результат вряд ли будет точным. Значит, выпаивание — это необходимость.
Это тот минимум, который вам нужно было узнать о проверке транзистора мультиметром не выпаивая.
Мы надеемся, что наша статья была вам полезна. Заглядывайте и в другие материалы нашего блога. Мы припасли для вас много важной информации!