Транзисторы предназначены для решения задач усиления и переключения электрических сигналов. Время бурного развития транзисторов – 50 – 80 годы прошлого столетия. В настоящее время следует признать, что транзисторы как отдельные компоненты используются в схемах не так часто. Массово они применяются только внутри интегральных схем.
Различают транзисторы двух видов: биполярные и униполярные (полевые).
В биполярных транзисторах в создании токов участвуют как электроны (отрицательно заряженные частицы), так и дырки (положительно заряженные частицы). Отсюда название вида транзисторов.
Биполярные транзисторы устроены сложнее полупроводниковых диодов, они имеют два pn-перехода и три вывода, называемых база, эмиттер и коллектор. Различают два вида БТ: NPN и PNP.
Устройство, особенности и схемотехнику будем рассматривать на при-мере NPN-транзисторов – наиболее используемых в современной практике, для PNP-транзисторов рассуждения аналогичны и различия заключаются толь-ко в подключении питающих напряжений.
Устройство и принцип действия биполярных транзисторов
Устройство и принцип действия NPN-транзисторов показаны на рисунке 2.19.
NPN-транзистор имеет три микроэлектронные области: две – с N-проводимостью и одну – с P – проводимостью. Каждая область имеет вывод с указанными на рисунке названиями.
Структуру NPN-БТ можно также представить в уже более понятных обозначениях: как два диода, соединённых анодами в области базы.
На рисунке 2.20 показан наиболее распространённый способ использования биполярных транзисторов, когда на базу и коллектор подаются положительные (+) потенциалы по отношению к эмиттеру. При этом положительный потенциал коллектора выше потенциала базы! Другими словами, коллекторный pn-переход смещён в обратном направлении (смотрите, коллекторный диод формально закрыт), а базовый – в прямом.
При этом если в базу задать ток, то в силу структурной особенности кристалла биполярного транзистора, этот базовый ток Iб будет «подсасывать» из коллекторной области электроны и формировать коллекторный ток
Iк= β*Iб , (2.7)
где β> 1 называется коэффициентом усиления тока базы.
Типовые паспортные значения β = 20÷500. Ток эмиттера, таким образом, в соответствии с первым законом Кирхгофа
Iэ = (β +1)*Iб (2.8)
Линейный режим работы биполярных транзисторов
В линейном режиме работы биполярный транзистор усиливает входные сигналы.
Простейшие транзисторные схемы, с помощью которых можно усиливать малые напряжения показаны на рисунке 2.21. Схемы такой конфигурации принято называть схемами (каскадами) с общим эмиттером (схемы ОЭ), т.к. один из выводов БТ – эмиттер, используется для формирования как входного, так и выходного сигнала – является общим для них. Поясним работу такого усилителя.
Пусть усиливаемый сигнал – переменное синусоидальное напряжение, которое подаётся на вход схемы общего эмиттера. Усиленный сигнал снимается с выхода схемы ОЭ. Усиленный сигнал имеет ту же форму синусоиды, но следует в противофазе с входным: когда входная синусоида возрастает, выходная синусоида спадает.
Основная характеристика усилителя – коэффициент усиления входного напряжения, который рассчитывается как
Кус=ΔUвых/ΔUвх ≈ R2/rэ, (2.9)
где rэ – сопротивление эмиттера. Сопротивление эмиттера можно подсчитать по формуле:
rэ= ϕт/Iэ = k*T/q*Iэ ≈ k*T/q*Iк, (2.10)
где k — постоянная Больцмана,
Т – температура в кельвинах,
q – заряд электрона.
При температуре +25ºС (300 К) ϕт = 26 мВ.
Примечания
- Существует графический способ оценки rэ. Для этого требуется знание входной вольт-амперной характеристики выбранного биполярного транзистора;
- Коэффициент усиления сигнала по напряжению, как видно из формулы, зависит от температуры. В том случае, когда диапазон работы усилительной схемы широк, применяют чуть более сложные модификации схемы объединенных эмиттеров, более устойчивые к изменению температуры.
Следует иметь в виду, что выражение для Кус приблизительное и оно будет тем более справедливо, чем больше β, хорошо, если β >100.
Расчёт схемы ОЭ по постоянному току
На этом этапе нам необходимо рассчитать значения R1и R2, которые задают режим по постоянному току, а R2кроме того входит в выражение для Кус.
Работа биполярного транзистора описывается входными и выходными характеристиками (показано на рисунке 2.22). Входная характеристика Iб=ʄ(Uэ), как и следовало ожидать, аналогична характеристике п/п диода. Однако у транзистора поведение этой характеристики зависит (несильно) ещё и от напряжения Uкэ. Поэтому в технических описаниях на выбранный транзистор даются семейства входных характеристик, где параметром является Uкэ. Выходная характеристика ‒ также семейство зависимостей типа Iк= ʄ (Uкэ), параметром для которых является базовый ток Iб.
Оба семейства имеют принципиально нелинейное поведение, однако, это не мешает их использовать для режима линейного усиления. Для этого надо построить нагрузочную прямую на выходном семействе, рассчитать положение на ней рабочей точки (РТ) и определить из графика начальный ток базы.
Нагрузочная прямая строится, как и раньше для диода, между двумя аналогичными точками:
Iк= Eпит/R2 и Uкэ=Епит. В нашем расчёте мы задались значениями Епит=15 В и Iк = Eпит/R2 =30 мА. Тогда R2=15/0,03 = 500 Ом. Строим прямую и выбираем положение РТ – это середина линейного участка (показано на рисунке 2.22). Линейным участком будем называть участок нагрузочной прямой между напряжением насыщения и напряжением отсечки. Параметры РТ в нашем примере соответствуют следующим значениям (показано на рисунке 2.23):
Uкэ.рт ≈ 7 В, Iк.рт ≈ 16 мА, Iб.рт ≈ 0,3 мА.
Далее: выбираем из семейства входных ту характеристику, которая соответствует найденному значению Uкэ≈ 7,0 В, задаём Iб = 0,3 мА, и определяем Uбэ≈ 0,65 В. Строим актуальный участок входной нагрузочной прямой и рассчитываем R1= (15-0,65) В/ 0,3 мА = 45 кОм.
Примечание – На практике расчёт проводиться несколько сложнее.
Рассчитаем коэффициент усиления каскада при t°=25 °С.
Кус = Iэ R2/ ϕт = 16 мА × 500 Ом/ 26 мВ ≈ 308.
Важно теперь проверить: не превышает ли мощность, рассеиваемая на коллекторе, номинальное паспортное значение выбранного биполярного транзистора.
Расчёт ведётся в рабочей точке: Uкэ.рт ×Iк.рт = 7 В×16 мА=112 мВт. Это значение постоянно и не меняется в режиме усиления входного сигнала, когда напряжения и токи коллектора меняются в широком диапазоне. Это объясняется тем, что напряжение и ток коллектора меняются в этой схеме в противофазе: когда ток увеличивается, напряжения уменьшается, и наоборот.
Расчёт схемы ОЭ по переменному току
Пример формирования выходных сигналов схемы с ОЭ под воздействием изменения тока базы показан на рисунке 2.23. Под воздействием синусоидально изменяющегося тока базы (синусоида, изображённая пунктиром) РТ смещается вдоль нагрузочной прямой сначала вверх до своего максимума, а затем вниз до своего минимума.
По рисунку видим, что при изменении тока базы в диапазоне от 0,05 до 0,55 мА с амплитудой (0,55-0,05)/2 = 250 мкА, ток коллектора изменяется в диапазоне примерно от 3 мА до 29 мА с амплитудой (29-3)/2 = 13 мА. Имеем отсюда следующее значение коэффициента усиления по току:
Кi= 13 000/250 = 52
Напряжение коллектора изменяется в диапазоне примерно от 0,5 В до 13 В с амплитудой (13-0,5)/2 = 6,25 В. Ещё раз подчеркнём, что изменение напряжения коллектора осуществляется в противофазе с изменением входного (усиливаемого) тока: при увеличении тока базы увеличивается коллекторный ток и уменьшается коллекторное напряжение!
Пока мы ничего не говорили о конденсаторах С1и С2. Это так называемые разделительные конденсаторы. Они не пропускают постоянные составляющие усиливаемых напряжений и пропускают только переменные. Их значения должны быть достаточно большими: чем больше значения ёмкостей, тем меньше ʄн – минимальная усиливаемая частота. Обычно эти конденсаторы имеют значения от 1 до 100 мкФ.
Измерение коэффициента передачи биполярного транзистора по току
Если в тестере имеется возможность измерения коэффициента передачи по току, то проверить работоспособность транзистора можно, установив выводы транзистора в соответствующие гнезда.
Советуем к прочтению: Как рассчитать сопротивление резистора для понижения тока
Коэффициент передачи по току – это отношение тока коллектора к току базы.
Чем больше коэффициент передачи, тем большим током коллектора может управлять ток базы при прочих равных условиях.
Цоколевку (наименование выводов) и другие данные можно взять из data sheets (справочных данных) на соответствующий транзистор. Data sheets можно найти в Интернете через поисковые системы.
Тестер покажет на дисплее коэффициент передачи (усиления) тока, который нужно сравнить со справочными данными.
Коэффициент передачи тока маломощных транзисторов может достигать нескольких сотен.
У мощных транзисторов он существенно меньше – несколько единиц или десятков.
Однако существуют мощные транзисторы с коэффициентом передачи в несколько сотен или тысяч. Это так называемые пары Дарлингтона.
Пара Дарлингтона представляет собой два транзистора. Выходной ток первого транзистора является входным током для второго.
Общий коэффициент передачи тока – это произведение коэффициентов первого и второго транзисторов.
Пара Дарлингтона делается в общем корпусе, но ее можно сделать и из двух отдельных транзисторов.
Ключевой режим работы биполярных транзисторов
Смотрим на выходные характеристики БТ. При подаче большого тока в базу (>0,3 мА) напряжение Uкэ уменьшается до своего минимального значения (типовое значение 0,2 В). Говорят «транзистор переходит в режим насыщения».
С другой стороны, если в базу ток не подавать (Iб ~ 0), то коллекторный ток прерывается и напряжение на выходе каскада будет равно напряжению питания Епит ‒ биполярный транзистор будет находится в «режиме отсечки».
Собственно эти два состояния БТ и описывают ключевой режим его работы: ключ (транзистор) включён или выключен, нагрузка подключена к питанию или отключена. Простейшие ключевые схемы на БТ показаны на рисунке 2.24. На представленных принципиальных схемах показано, что управление схемами осуществляется с помощью цифровых сигналов: логического нуля («0»)и логической единицы («1»). В современной практике такие сигналы формируются чаще всего микроконтроллерами.
Обращаем внимание, что оба вида БТ используется в схемах с плюсовым (положительным) питанием (+Епит) и нагрузка в обоих случаях расположена в коллекторной цепи БТ. При этом: логическая единица в одном из случаев (NPN-транзистор) замыкает ключ, а в другом (PNP-транзистор) – размыкает.
Условие замыкания ключа: Iб * β >Iк.нас ≈ Епит/Rнагр. Ток базы приближённо можно рассчитать для обоих случаев так: Iб= (Епит-0,6)/R1.
Зная напряжение питания, сопротивление нагрузки и коэффициент усиления тока базы β, можно рассчитать по указанным формулам R1.
Виды транзисторов
По принципу действия и строению различают полупроводниковые триоды:
- полевые;
- биполярные;
- комбинированные.
Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.
Полевые
Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:
- Транзисторы с управляющим p-n переходом (рис. 6).
- С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
- МДП, со структурой: металл-диэлектрик-проводник.
Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.
Детали очень чувствительны к статическому электричеству.
Схемы полевых триодов показано на рисунке 5.
Рис. 5. Полевые транзисторы
Рис. 6. Фото реального полевого триода
Обратите внимание на название электродов: сток, исток и затвор.
Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.
Биполярные
Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.
Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.
Более детально о строении и принципе работы рассмотрим ниже.
Комбинированные
С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:
- биполярные транзисторы с внедрёнными и их схему резисторами;
- комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
- лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
- конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).
Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.
Проверка работоспособности биполярных транзисторов
Многие мультиметры позволяют измерять коэффициент усиления тока базы (β; h21) транзисторов с гибкими выводами. На рисунке 2.26 показано типовое решение этой задачи. В специальный разъём, соблюдая указанный на лицевой панели порядок, подключается транзистор. Значение β высвечивается на дисплее.
Примечания
- NPN- и PNP-транзисторы имеют раздельные гнёзда для подключения.
- Для обоих типов транзисторов предусмотрено по два гнезда для подключения эмиттера. Это связано с возможными конструктивными различиями в цоколёвках транзисторов.
Что такое транзистор?
Транзистор – электронный полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов. Если быть точнее, то транзистор позволяет регулировать силу электрического тока подобно тому, как водяной кран регулирует поток воды. Отсюда следуют две основные функции прибора в электрической цепи — это усилитель и переключатель.
Существует бесконечное множество разных типов транзисторов – от огромных усилителей высокой мощности размером с кулак, до миниатюрных переключателей на кристалле процессора размером в считанные десятки нанометров (в одном метре 109 нанометров).