Неисправности электродвигателей: классификация, диагностика и определение проблемы, методы устранения и советы специалистов


Электродвигатели представляют собой довольно сложные механизмы, которые способны развивать большую мощность, за счет чего обеспечивают работу многих устройств. Область их применения обширна – их можно обнаружить в пылесосе, мясорубке, стиральной машине. Но только бытовыми условиями все не ограничивается, и эти механизмы могут быть частью промышленного оборудования, где способны на гораздо больший функционал. При этом рано или поздно, но случаются неисправности электродвигателей.

Если в быту поломка ограничивается лишь дискомфортом, то в промышленных масштабах это приводит к вынужденным перерывам в работе электрического оборудования. А такие задержки в производстве крайне нежелательны, поэтому необходимо своевременно выявить причину неисправности и как можно скорее устранить ее.

Устройство электродвигателей

Вдаваться в подробности не имеет смысла, поэтому ограничимся кратким курсом. С конструктивной точки зрения, любой электродвигатель состоит из двух основных частей:

  1. Статор — представляет собой стационарную деталь, которая закреплена на корпусе механизма.
  2. Ротор – вращающая часть, за счет которой как раз производится работа устройств.

При этом ротор находится в полости статора и механически никак с ним не контактирует, но в то же время может соприкасаться через подшипники. При анализе на предмет выявления неисправностей электродвигателя вентилятора или любого другого устройства в первую очередь проверяется способность ротора вращаться. Для этого первым делом полностью снимается напряжение со схемы питания и только после этого можно вручную прокрутить ротор.

Для работы электрического силового агрегата необходимы два важных условия. Во-первых, на его обмотку (у многофазных электродвигателей их несколько) должно подаваться номинальное напряжение. Во-вторых, и электрическая, и магнитная схема должна быть полностью в исправном состоянии.

Разборка старого электродвигателя

Кажется нет ничего проще чем разобрать электродвигатель, открутить 8 болтов, снять крышки и вот он стоит разобранный. Совершенно с этим согласен, но лишь в том случае когда электродвигатель проходит регулярный плановый осмотр разобрать его не составляет труда.

Теперь давайте представим ситуацию когда электромотор не разбирался этак лет восемь и эксплуатировался мягко говоря не в слишком благоприятных условиях. Мне раз приходилось разбирать электродвигатель который проходил осмотр еще при Горбачеве, и удовольствия в этом мало.

Первый этап – это снятие шкива или полумуфты. Обычно они снимаются легким постукиванием молотка по деревяшке. Но в нашем случае все обстоит иначе полумуфта или шкив намертво прикипели к валу.

Предлагаем вашему вниманию обзор хорошо зарекомендовавшего себя в работе Дизель генератора Wilson который идиально подходит в качестве аварийного и основного источника электрического тока.

Какое освещение Вы предпочитаете

ВстроенноеЛюстра

Электродвигатели, работающие на постоянном токе

Эти механизмы обладают довольно широким спектром использования:

  • вентиляторы компьютерных устройств;
  • стартеры транспортных средств;
  • мощные дизельные станции;
  • зерноуборочные комбайны и т. п.

Магнитное поле статора данных механизмов создается двумя электромагнитами, которые собраны на специальных сердечниках (магнитопроводах). Вокруг них располагаются катушки с обмотками.

Магнитное поле подвижного элемента формируется током, который проходит через щетки коллекторного узла вдоль обмотки, уложенной в пазах якоря. Тему неисправности ротора электродвигателя мы обязательно затронем, но немного позднее.

Электродвигатели переменного тока

Эти механизмы могут быть как асинхронными, так и синхронными. Можно выявить некоторое сходство между асинхронными моделями и двигателями, работающими на постоянном токе. Тем не менее, существуют конструктивные отличия. Ротор асинхронных силовых электрических установок выполнен в виде короткозамкнутой обмотки (прямая подача тока на нее от электроустановки отсутствует). В народе такая конструкция получила довольно звучное наименование – «беличье колесо». Помимо этого, в таких двигателях иной принцип расположения витков статора.

У синхронных силовых агрегатов обмотки катушек на статоре располагаются под одинаковым углом смещения между собой. Благодаря этому формируются силовые линии электромагнитного поля, которые вращаются с определенной скоростью.

Внутри этого поля располагается электромагнит ротора. Под воздействием приложенного магнитного поля, он тоже начинает двигаться в соответствии с частотой, синхронной скорости вращения приложенной силы.

Асинхронный движок с полым перфорированным ротором

На сегодняшний день двигатели, у которых полые агрегаты, распространены очень обширно в системах с траекторным управлением, а также в следящих системах передающих углы. Иногда их можно встретить в указателях скоростей поворотов, инерционной навигационной системе.

В самых распространенных конструкциях движка подобного образца встречаются статоры, у которых намотка управления и возбуждения, шихтованные магнитопроводы и сплошные полые детали. Но в этом техническом решении есть один минус — они негативным образом влияют на энергетические характеристики агрегатов. Это связано с вихревыми токами, которые замыкаются даже в активных областях агрегатов, а не только лишь в выступающих лобовых частях.

Существует индукционный мотор с 2 пакетами (отличной конструкции), у которых содержится намотка и полые агрегаты. Они имеют окна на цилиндрической части, расположенные около активного длинного статора, образующего зубцовую зону. Несмотря на все это зубцовая зона статоров располагается сдвигаясь на ¼ чать от зубцовых делений.

У данной конструкции электромашины есть недостатки — низкие показатели коэффициента полезного действия. Присутствие пазов, расположенных вдоль активной длины, будет определять высокие значения активных составляющих сопротивлений полых валов. Полученный эффект является доминирующим, если сравнивать его над меньшим сопротивлением поперечных краевых эффектов в материале.

Что относится к концепции вращающихся магнитных полей

Для осознания вращающихся магнитных полей, желательно разобраться с упрощенными трехфазными намотками с 3 витками. Ток, текущий по проводникам, создает магнитные поля вокруг них. Каждая из составляющих переменного тока будет меняться с течением времени. В итоге изменится создаваемой магнитное поле. Также результирующие магнитные поля 3-х фазных обмоток будут принимать разные виды ориентации. Амплитуда при этом одинаковая.

Как действует магнитное вращающееся поле на замкнутые витки

Когда замкнутый проводник размещается внутри магнитного поля, которое вращается, то согласно закону про электромагнитную индукцию, магнитные поля, которые будут меняться, приведут к возникновению электродвижущей силы в проводнике. А затем ЭДС вызовет возникновение тока в проводнике. Выходит, что в магнитных полях находится замкнутый проводник с током. Если верить закону Ампера, то начнет свое действие сила, в итоге контур будет переведен во вращательный режим.

Что касается короткозамкнутых роторов асинхронных двигателей

Такие движки тоже способны работать по этому принципу. Вместо рамочек с током внутри асинхронного электродвигателя имеется деталь короткозамкнутого плана — их конструктивные особенности напоминают беличьи колеса. Поэтому короткозамкнутые роторы состоят из стержня, который замкнут с торца кольцом. Трехфазный переменный ток, при прохождении по намотке статора, создает магнитное поле с вращением. Выходит, что в стержне индуцируется ток, в итоге агрегат приходит во вращение.

Как подключают асинхронные двигатели:

  1. Электрическая сеть трехфазного переменного тока распространилась более повсеместно среди всех электрических систем, по которым подается энергия. Главный плюс 3-х фазной системы, если сравнивать ее с однофазной — это экономичные показатели. В ней энергия будет подаваться по 3 проводам, а ток, текущий в разных проводах, сдвинут касательно друг друга по фазе 120 градусов. И не стоит забывать, что синусоидальный ЭДС на разной фазе обладает одинаковой амплитудой и частотой.
  2. Фазные напряжения — речь идет о разнице потенциалов между концом и началом одной из фаз. Фазным напряжением является разница между линейными проводами и нейтральными.
  3. Треугольники со звездами — 3-х фазная обмотка статоров электромотора соединена согласно схемы треугольник или звезда. Все зависит от напряжения питания сетей. Концы 3-х фазных обмоток могут быть соединенными внутри электромоторов или выводятся наружу, также выводятся в распределительные коробки.

Стоит отметить, что независимо от того, что мощности, которые используются для того, чтобы соединить треугольники со звездами, их нужно вычислять по одной из формул подключения одного и того же электромотора, но разными способами. Когда их соединяют в одной электросети, то это приводит к потреблению разных мощностей. Если неправильно подключить электродвижок, то намотки статора могут оплавиться.

Оценка вращения ротора

Выявление неисправностей электродвигателя переменного тока включает различные манипуляции с ротором. Зачастую возможность оценить степень вращения этого подвижного элемента осложняется из-за подключенного привода. К примеру, у силового агрегата пылесоса его можно без проблем раскрутить руками. А для того чтобы провернуть рабочий вал перфоратора, необходимо приложить некоторые усилия. Но а если вал соединен с червячным редуктором, то в этом случае из-за особенностей данного механизма провернуть его и вовсе не получится.

Именно по этой причине проверка вращения ротора производится только при выключенном приводе. Но что может затруднять его вращение? На это есть несколько причин:

  • Контактные площадки скольжения износились.
  • В подшипниках отсутствует смазка или же был использован неправильный состав. Иными словами, обычный солидол, которым принято заполнять шарикоподшипники, при сильной отрицательной температуре густеет. Это может служить причиной плохого запуска электрического механизма.
  • Наличие между статором и ротором грязи или посторонних предметов.

Как правило, причину неисправности электродвигателя в отношении подшипника определить нетрудно. Разбитая деталь начинает издавать шум, что дополнительно сопровождается люфтом. Для выявления этого достаточно пошатать ротор в вертикальной либо горизонтальной плоскости. Также можно попробовать вдвигать и вытаскивать ротор вдоль его оси. При этом стоит учесть, что незначительный люфт для большинства моделей силового агрегата является нормой.

Недостаточные обороты электродвигателя

Как правило, выявление механических неисправностей в подшипниках не дает ответа на вопрос, почему электродвигатель не набирает обороты. Причиной может быть неисправность в ведомой нагрузке. Но, если у свободного от нагрузки двигателя подшипники настолько загрязнены и износились, что вал не может раскрутиться, то такое явление будет наблюдаться очень недолго – из-за трения и большого тепловыделения сталь шарикоподшипников раскалится, и они будут буквально перемолоты, что в итоге приведет к заклиниванию ротора.

Поэтому причину недостаточных оборотов следует искать во внутренних или внешних электрических неполадках. Первым делом нужно убедиться в качестве электроэнергии, поступающей на клеммы двигателя – напряжение должно соответствовать номинальному значению.

Также следует проверить контактные площадки контакторов пускателя – при больших токах они могут подгорать, что будет вызывать падение напряжения на них. В неисправных изношенных контакторах может происходить дребезг контактов, что приводит к прерыванию тока.

Народный способ проверить работоспособность пускателя – подключить к нему другой исправный электродвигатель такого же типа, той же или немного меньшей мощности.

Основные неисправности во внутренней электрической системе, влияющие на обороты двигателя.

Исключив внешние электрические неисправности, необходимо проверить обмотки двигателя на пробой и обрыв. Мультиметр переключают в режим мегомметра и измеряют сопротивление изоляции обмоток, приложив щупы поочередно к каждому выводу и корпусом. Если на дисплее высвечивается ноль, то имеет место явный пробой – где-то изоляция перетерлась, и провод напрямую контактирует с корпусом.

При данных измерениях дисплей может показывать сопротивление в пределах нескольких мегаом – в этом случае нужно смотреть документацию к двигателю, и свериться с графой сопротивления изоляции.

Вполне возможно, что повышенная влажность, наличие в двигателе мелкой металлической стружки будет ухудшать диэлектрические свойства изолирующих материалов. Данные утечки тока, протекающие сквозь дефективную изоляцию, негативно влияют как на эффективность электродвигателя, так и электробезопасность его эксплуатации.

Обнаружение неисправностей в обмотках электродвигателей

Обрыв в одной из обмоток может стать причиной того, что двигатель не запустится вовсе и будет сильно гудеть, пока не сработает защита или не перегорят оставшиеся катушки. Для обнаружения обрыва в обмотках трехфазного асинхронного двигателя, необходимо отсоединить перемычки, формирующие подключение звездой или треугольником и проверить каждую обмотку в отдельности.

Такой способ будет надежнее всего и не даст возможности запутаться начинающему мастеру. Проверку осуществляют в режиме омметра. В зависимости от качества прибора и мощности двигателя, показания омметра буду близки к нулю, составляя несколько Ом.

Здесь важно, чтобы сопротивление обмоток было одинаково. Условие равенства сопротивления обмоток справедливо также для двигателей постоянного тока. В данных электродвигателях имеются две или несколько статорных обмоток и множество обмоток на роторе, подключенных к коллекторным контактным пластинам.

Если в одной из обмоток сопротивление меньше, чем у других, то это указывает, что между некоторыми витками катушки произошло короткое замыкание, которое называют межвитковым.

Обнаружение межвиткового замыкания в обмотках двигателя

Именно такое межвитковое замыкание очень часто является причиной недостаточного набора оборотов двигателем. Точность у обычных мультиметров недостаточна для измерения десятых долей Ома. Поэтому используют дополнительное сопротивление реостата, формируя делитель напряжения вместе с испытуемой обмоткой, стабилизированный источник питания, вольтметр и амперметр. Измеряют падение напряжения на каждой обмотке – в случае их исправности, показания вольтметра будут одинаковыми. Меньшее напряжение будет указывать на наличие межвиткового замыкания даже без вычисления сопротивлений обмоток, которые можно произвести по формуле, приведенной на рисунке.

При условии равенства фаз, межвитковое замыкание в обмотках работающего асинхронного трехфазного двигателя можно обнаружить, измерив токи в каждой фазе. Увеличенный ток в одной фазе при подключении обмоток электродвигателя звездой, или больший ток в двух фазах при подключении обмоток треугольником будет указывать на межвитковое замыкание.

Иногда найти место межвиткового замыкания в асинхронном двигателе можно применив народный метод – вынимают ротор, и на обмотки подают пониженное трехфазное напряжение – не более 40 В (для обеспечения электробезопасности и чтобы катушки не перегорели).

В цилиндр горизонтально стоящего статора помещают металлический шарик, который начнет катиться по внутренней поверхности статора, следуя за вращающимся магнитным полем.

Если шарик вдруг примагнитится к одному месту, то его местоположение будет указывать на межвитковое замыкание.

Основные неисправности коллекторных электродвигателей

У коллекторных электродвигателей постоянного и переменного тока часто встречается неисправность, связанная с износом контактных пластин и щеток коллектора. При сильном износе и загрязнении соприкасающихся поверхностей сопротивление коллекторных контактов будет увеличиваться, что приведет к снижению момента вращения и эффективности двигателя.

В конечном итоге такой износ приводит к тому, что между щеткой и пластиной периодически пропадает контакт, и в процессе вращения наблюдается прерывистая работа электродвигателя.

При запуске такой электродвигатель может не запустится вовсе. Если при подаче напряжения коллекторный двигатель постоянного или переменного тока иногда запускается после толчка его вала, то необходимо заменить щетки и почистить коллекторные пластины. Иногда наблюдается повышенное искрение у одной из щеток – это указывает на смещение щетки относительно перпендикулярной оси вала центральной линии, проходящей через центр. Центровка щеток поможет устранить данный дефект.

Ознакомиться с процессом проверки коллекторных двигателей можно, посмотрев приведенное ниже видео

Неисправности в магнитопроводе, ухудшающие характеристики электродвигателя

Если с механической и электрической частью двигателя переменного тока все в порядке, но ощущается, что он работает не на максимальной мощности и наблюдается повышенное тепловыделение, то возможно замыкание между пластинами магнитопровода.

Переменный ток в магнитопроводе вызывает вихревые токи, ухудшающие характеристики электродвигателя, поэтому статор и ротор набирают из шихтованных пластин специальной электротехнической стали. Данные пластины покрываются изоляцией в виде оксидного слоя, напыления или лака.

Если вследствие механических повреждений или появления ржавчины изоляция между шихтованными пластинами нарушается, происходит короткое замыкание между ними.

Обнаружить замыкание пластин магнитопровода при помощи домашних измерительных приборов практически невозможно, поэтому нужна полноценная диагностика неисправностей двигателя в специализированной мастерской.

Иногда замыкание магнитопровода можно обнаружить при тщательном осмотре поверхности, или заметив локальный повышенный нагрев магнитопровода. Но без полной разборки всего двигателя, включая магнитопровод, данную неисправность устранить невозможно.

В приведенных ниже таблицах собраны наиболее часто встречаемые неисправности и поломки электродвигателей, а также методы их устранения.

Проверка щеток

Пластины коллектора, по сути, являются контактным соединением части непрерывной обмотки якоря. Через данное подключение к щеткам подводится электрический ток. Пока силовой агрегат находится в исправном состоянии, в этом узле формируется переходное электрическое сопротивление. К счастью оно не способно оказывать какого-либо значительного влияния на работу механизма.

Как определить неисправность электродвигателя? У тех силовых агрегатов, которые подвергаются сильным нагрузкам в период эксплуатации, обычно загрязняются пластины коллектора. Кроме того, в пазах может скапливаться графитовая пыль, что отрицательно сказывается на изоляционных свойствах.

Сами щетки прижимаются к пластинам под воздействием пружин. Во время работы электродвигателя графит постепенно стирается, длина стержня щеток сокращается, а усилие, создаваемое пружиной, уменьшается. В результате контактное давление ослабевает, что приводит к увеличению переходного электрического сопротивления. Из-за этого коллектор начинает искрить.

В конечном счете, это приводит к повышенному износу щеток, включая медные пластины коллектора. В свою очередь все в итоге заканчивается поломкой двигателя. По этой причине важно регулярно проверять щеточный узел, тщательным образом осматривая чистоту поверхностей. В ходе поиска причин неисправности электродвигателя также не следует забывать о выработке самих графитовых щеток, включая условия работы пружин.

Обнаруженные загрязнения следует убирать куском мягкой тряпки, предварительно смоченной в растворе технического спирта. Промежутки меж пластин необходимо очищать при помощи воронила из твердой не смолистой породы древесины. По самим щеткам можно пройтись мелкозернистой наждачной бумагой.

При обнаружении на пластинах коллектора выбоин либо выгоревших участков, сам узел подергается механической обработке, включая полировку, пока не будут устранены все неровности.

Проверка обмоток электродвигателя. Неисправности и методы проверок

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Основные причины, вызывающие поломки электродвигателей

После сбора электродвигателей в заводских условиях, они подвергаются различному тестированию. И по их завершению они считаются полностью исправными и поставляются на рынок либо непосредственно к заказчику. Впоследствии все неисправности, которые возникают, обнаруживаются в ходе дальнейшей эксплуатации силовых агрегатов.

К числу причин основных неисправностей электродвигателей можно приписать нарушение условий транспортировки от изготовителя до места назначения. В большинстве случаев поломка может случиться на этапе загрузки или разгрузки электрических моторов. Также далеко не каждая компания ответственно относится к самой перевозке груза, в частности не соблюдая рекомендации в отношении транспортировки электродвигателей.

Еще одна причина – это нарушение правил хранения. В результате разрушаются основные узлы силовых агрегатов из-за воздействия перепадов температуры, уровня влажности и прочих внешних факторов.

Неисправности электродвигателя и способы их устранения

Среди большого количества поломок можно выделить случаи, которые наблюдаются чаще всего:

  1. Не вращается якорь при подключении электросети, что может быть обусловлено малым током или полным его отсутствием.
  2. Не развивается необходима частота вращения. Здесь причиной неисправности может служить изношенный подшипник.
  3. Перегрев электродвигателей. В этом случае причин довольно много – от перегрузки устройства до нарушения вентиляции.
  4. Сильное гудение механизма при работе, а также появление дыма. Возможно, замкнуты витки определенных катушек.
  5. Механизм сильно вибрирует – вызвано вследствие нарушения балансировки вентиляторного колеса либо другой части силового агрегата. Выявить это можно в ходе визуального осмотра.
  6. Кнопка отключения отказывается работать. Обычно так бывает, когда «залипают» контакты на магнитном пускателе.
  7. Посторонние шумы на фоне перегрева подшипника. Такая поломка обычно вызвана сильным загрязнением детали либо ее износом.

Это далеко не весь список неисправностей асинхронных электродвигателей (и прочих), которые могут возникнуть в процессе эксплуатации электрических силовых установок. Определить другие поломки сможет только опытный специалист. Разберем более подробно некоторые не менее распространенные неисправности.

Равномерный перегрев статора

В некоторых случаях активная сталь статора электродвигателей начинает перегреваться, хотя нагрузка имеет номинальные параметры. При этом нагрев может быть равномерным либо неравномерным. В первом случае причина может заключаться в напряжении, которое выше номинального значения или же все дело в вентиляторе. Причина такой неисправности устраняется несложно – для этого необходимо снизить нагрузку либо усилить двигатель вентилятора.

При определении неисправностей электродвигателя также важно обратить внимание на то, как соединены обмотки статора. Обычно тут все зависит от величины номинального напряжения:

  • Для низких значений используется соединение «треугольник».
  • Для более высокого напряжения предусмотрено соединение «звезда».

Иными словами, для «треугольника» – это 220 В, а для «звезды» – 380 В. В противном случае может возникнуть перегрузка силового агрегата, что и чревато его перегревом.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

s = 100% * ( ns/ n1) = 100% * (n1 — n2) / n1 , где ns – частота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Техобслуживание асинхронного двигателя. 23. Техническое обслуживание синхронных электрических двигателей переменного тока с короткозамкнутым ротором (содержание, требования к персоналу, тб). Основные причины выхода из строя электродвигателей, используемых в сельскохозяйственном производстве несоответствие тяжелым условиям среды; несоответствие или отсутствие защиты от неполнофазных режимов работы и аварийных перегрузок; недостаточный уровень эксплуатации. Спрашивайте, я на связи!

Неравномерный перегрев статора

В случае неравномерного перегрева причин несколько. Это может быть пробой в обмотке статора, замыкание на корпус. Из-за этого зубцы не только выгорают, но и могут оплавиться.

Также этому может способствовать замыкание промеж некоторых пластин, вызванное заусенцами. К тому же нельзя исключать и прикосновение ротора к корпусу статора. В этом случае устранение неисправностей электродвигателя будет сведено к вырезанию неисправных элементов, удалению заусенцев. После этого необходимо изолировать листы друг от друга посредством слюды либо специального картона.

При наличии слишком большого количества повреждений делается перешихтовка активной стали статора с переизолировкой всех листов. Сама стационарная деталь перематывается.

Все дело в роторе

При следующих характерных признаках причину неисправности ротора следует искать в некачественной пайке его цепи:

  • перегрев ротора;
  • гудение;
  • торможение;
  • несимметричные показания токах в фазах.

Прежде чем начинать ремонтировать ротор, следует обследовать, насколько качественно была выполнена пайка его обмоток. При необходимости, стоит перепаять, то же самое нужно сделать с теми участками, которые вызывают опасения.

Также могут быть случаи, когда неисправность электродвигателя обусловлена тем, что ротор недвижим и разомкнут, хотя на трех кольцах одинаковое напряжение. В этом случае причина неисправности, скорее всего, кроется в разрыве проводов, соединяющие ротор с пусковым реостатом. Как правило, это обусловлено износом вкладышей, сдвигом щитов подшипников, из-за чего ротор начинает притягиваться к статору. Ремонт ротора – это замена вкладышей, а также регулировка щитов подшипников.

Помимо этого, щетки и коллектор могут искрить либо нагреваться. Это может произойти по нескольким причинам:

  • щетки пришли в негодность;
  • неверная установка щеток;
  • размеры щеток не соответствуют габаритам обоймы держателя;
  • некачественное соединение щеток с арматурой.

В этом случае достаточно в точности выставить щетки вместе с держателями.

Преимущества и недостатки

Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:

  • стабильностью работы на оптимальных нагрузках;
  • высокой надёжностью в эксплуатации;
  • низкие эксплуатационные затраты;
  • долговечностью функционирования без обслуживания;
  • сравнительно высокими показателями КПД;
  • невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.
  • высокие пусковые токи;
  • чувствительность к перепадам напряжений;
  • низкие коэффициенты скольжений;
  • необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
  • ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.

Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.

Повышенные вибрации

С технической точки зрения подобное явление тоже можно считать неисправностью электродвигателя. Обычно сильные вибрации возникают вследствие разбалансировки ротора, муфты либо шкива. Также этому явлению может способствовать неаккуратное центрование валов устройства, искривление соединительных полумуфт.

Первым делом необходимо выполнить балансировку ротора, для чего отбалансировать полумуфты со шкивами. Также нужно отцентрировать двигатель. Поставить полумуфту в правильное положение, но для этого сначала ее нужно снять. Отыскать точку некачественного соединения или разрыва, после чего устранить поломку.

Советы специалистов

Одной только установкой электродвигателя все не заканчивается, что подтверждается многими специалистами. Необходимо предпринять все необходимые меры, чтобы продлить срок эксплуатации электрических силовых установок.

В частности со стороны персонала необходимо:

  1. Обеспечить защиту электродвигателей специальными устройствами.
  2. Установить устройство плавного пуска электродвигателя. Это позволит увеличить срок службе не только силового агрегата, но и его привода.
  3. Установить тепловое реле. С его помощью можно избежать тепловых перегрузок, что очень важно для электродвигателей.
  4. Исключить попадание влаги на корпус двигателя и в его полость. Тем самым можно обеспечить его работоспособность, поскольку этот фактор отрицательно воздействует на внутренние компоненты электродвигателя.
  5. Необходимо регулярно проводить техническое обслуживание. Это очистка самого двигателя от загрязнений, смазывание подшипников, подтяжка контактов.
  6. Не заниматься ремонтом силовых электрических установок без должного опыта и навыков. Работу эту лучше доверить специалистам.

К тому же, важно своевременно обнаружить неисправность электродвигателя и устранить ее, поскольку от этого зависит время задержки производства. А оно, как известно, на вес золота, если не еще ценнее.

Виды ремонтов электромашин

Для предотвращения появления неисправностей следует проводить обслуживание и плановые ремонты электрооборудования согласно утверждённому графику.

Ремонты электромашин делятся на техническое обслуживание (ТО), текущий, средний и капитальный ремонты. Объём работ в каждом из этих видов работ определяется “Типовым положением о техническом обслуживании и ремонте (ТОиР) электрооборудования”.

Техническое обслуживание

Это поддержание оборудования в рабочем состоянии между плановыми ремонтами. Проводится силами ремонтного и оперативно-ремонтного персонала.

Предусматривает следующие виды работ:

  • осмотр;
  • проверка нагрева;
  • протирка от грязи;
  • проверка изоляции;
  • выявление неисправностей и их устранение.

Производится по утверждённому графику и в период простоя – обеденный перерыв, наладка, смена инструмента.

Текущий ремонт

Поддерживается рабочее состояние до среднего ремонта. Производится на месте установки или в мастерской. Включает в себя:

  • комплекс работ по ТО;
  • замена вышедших из строя узлов – подшипников и муфт;
  • регулировка и проверка центровки.

Средний ремонт

При проблемах, которые невозможно устранить во время текущего ремонта производится средний ремонт. При этом производится:

  • полная разборка;
  • при необходимости замена подшипников;
  • ремонт корпуса и вала;
  • пропитка обмоток лаком;
  • изоляция или замена выводов

Производится средний ремонт в специализированных мастерских и предприятиях.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]