Основы проверки контура заземления в видеоприборах
Контур заземления – это любая цепь, в которой между электрическими устройствами выходит более одного источника заземления. Отсутствие заземления в оборудовании CCTV может вызывать многочисленные проблемы, в том числе волнистые линии и плохое качество видео.
Камера, подключенная к заземленному стеновому трансформатору в 100 м от рекордера, скорее всего, будет заземлена на другой автоматический выключатель, чем рекордер. Это позволяет определить и узнать, что между 2 источниками питания может быть разница в несколько вольт.
Для проверки контура заземления
- Установите вольтметр на самую чувствительную настройку.
- Отключите камеру, которую вы хотите протестировать.
- Поместите один контакт на корпус (попробуйте использовать винт на корпусе для обеспечения заземления).
- Поместите другой контакт на внешней стороне разъема.
Любое значение выше, чем ноль, как в квартире, указывает на отсутствующий разрыв контура заземления. Любое значение выше 0,1В выходит за пределы допуска для правильной записи.
Основные правила проверки заземления
Чтобы обеспечить безопасность и надежность работы, проверьте мультиметром или тестером розетки переменного тока в своем частном доме. Прежде чем подключаться к источнику переменного тока, выполните проверки источника питания переменного тока.
А именно:
- Выключите автоматический выключатель, который питает щит. К выключателю прикрепите тег S229-0237.
- Используйте измеритель сопротивления заземления, чтобы проверить сопротивление между заземляющим штырем приемника с каждым из фазных штырьков. Тест проверяет короткое замыкание на землю или разводку проводки.
- Используйте тестер заземления, чтобы проверить бесконечное сопротивление между фазными штырьками. Тест проверяет короткую проводку.
- Используйте мультиметр для измерения соответствующих напряжений между фазами. С помощью мультиметра убедитесь, что напряжение на розетке переменного тока правильное.
Как защититься от обрыва нуля
Как с этим бороться? Уберечь себя от повышенного напряжения при обрыве ноля, можно несколькими способами.
Первый способ — это выполнить надежное повторное заземление нулевого проводника. Забегая наперед скажу — способ этот плохой и вредный.
Данный метод можно использовать в частных домах
Не важно однофазный или трехфазный у вас ввод. Самое главное, сделать качественный заземляющий контур
После этого, соединяете отдельным проводником шинку нулевой жилы с этим контуром. В случае обрыва нулевого провода, электроснабжение ваших бытовых приборов останется в равновесии и никакого большого перекоса не случится.
Ток будет течь от фазы через сопротивление потребителя и уходить через нулевую шинку и его проводник на землю. И так по всем остальным фазам.
Небольшой перекос здесь конечно же будет присутствовать, но его величина будет зависеть от качества вашего контура заземления. Однако этот способ защиты имеет один жирный минус, который перечеркивает все его преимущества.
Безусловно, контур заземления делать нужно, с этим никто не спорит. Вопрос в том, соединять ли его с нулевым проводником.
Ведь если он будет качественным (10 Ом или даже 4 Ом) только у вас одного по всей улице, а обрыв нулевого провода случится не возле вашего дома, а в самом начале ВЛ, то на этот контур тут же «сядут» все ваши соседи.
Фактически весь суммарный ток пойдет через ваш нулевой проводник. Если вы ноль завели через двухполюсный или четырех полюсный автомат, то он скорее всего выбьет от перегрузки. В противном случае ждите пожара и оплавленной проводки.
Поэтому правильно собранный щит (вводной автомат подобранный по нагрузке, заземляющий медный проводник сечением не менее 10мм2) — залог вашей безопасности.
Еще один недостаток такой «контурной защиты» — опасность самому попасть под напряжение. Допустим, несколько лет назад вы сделали отличный контур.
Но по причине наличия солей в почве, он постепенно сгнил, а вы об этом даже и не догадываетесь.
В итоге при очередном обрыве нейтрали, все заземленное электрооборудование у вас дома окажется под напряжением. Никакой земли то уже нет. А потенциал фазы начнет гулять по корпусам приборов.
Пошел открыть холодильник — удар током, зашел в душ — попал под напряжение.
Поэтому надежнее и безопаснее всего применять другой метод.
Электромонтаж Иваново – Зануление: защитит или убьет?
Здравствуйте, друзья!
В этой статье поговорим о том, что такое зануление, где оно применяется, а также об основных ошибках при его устройстве. Тема непростая, на форумах ведутся постоянные дебаты.
Интересно то, что часто даже электрики не могут правильно сказать, чем отличается зануление от заземления. Давайте разбираться. Для начала посмотрим, что о занулении говорится в ПУЭ.
Попросту говоря, зануление – это соединение корпуса электрического прибора с нулевым проводом.
Теперь посмотрим, что говорит нам ПУЭ про заземление
Обратите внимание
Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
Простыми словами, заземление – это соединение корпуса электрического прибора с заземлителем. Заземлитель – это конструкция из металлических штырей, вбитая в землю.
Теперь давайте посмотрим, как устроены самые распространенные системы электроснабжения многоквартирных домов.
Старая, советская система TN-C
Более современная система TN-C-S
В обеих схемах используется совмещенный нулевой проводник PEN, который заземляется на трансформаторной подстанции.
Если внимательно посмотреть на схемы, становится понятно, что рабочий ноль всегда соединен с землей, то есть заземлен. И возникает вопрос: а в чем, собственно, разница между заземлением и занулением? Ведь соединив корпус прибора с рабочим нулем, мы фактически соединяем его и с землей.
На самом деле, разница есть. Она заключается в принципе действия.
Заземление предназначено для того, чтобы отводить ток на землю. Таким образом уменьшается опасное напряжение на корпусе прибора или устройства.
Зануление предназначено для создания эффекта короткого замыкания при пробое фазы на корпус. При этом срабатывает автомат и отключает аварийную линию.
Важно
Таким образом, зануление и заземление в системах TN работает одновременно, так сказать, в одном флаконе. Поэтому, 3-й защитный контакт в евророзетках в системах TN является и заземляющим и зануляющим.
Исходя из этого, правильно говорить о совмещенном проводнике PEN, рабочем нулевом проводнике N и защитном проводнике PE. При этом, даже электрики не всегда понимают разницу между PE и N, а она весьма существенная.
Обычно, когда какой-нибудь «электрик дядя Вася» говорит о занулении, то подразумевает разного рода колхоз типа перемычек в розетках и тому подобном соединении защитного провода с нулевым. И это опасно.
Неправильное зануление может вместо защиты может стать причиной трагедии.. А встречается такая псевдозащита очень, очень часто.
Давайте разберемся, как правильно делается защитное зануление и чего делать категорически нельзя.
ЧИТАТЬ ДАЛЕЕ: Снегоуборочная машина своими руками достойная альтернатива
Запомните, разделение совмещенного проводника на рабочий ноль и защитный ноль должно производиться в общедомовом вводном устройстве (ВРУ). И уже оттуда защитный проводник должен идти к этажным щитам, а от них в каждую квартиру.
Таким образом, мы получаем пятипроводный стояк: 3 фазы, рабочий ноль и защитный ноль. В этом случае речь о так называемом занулении не идет, поскольку в каждую квартиру приходит отдельный защитный провод (системы TN-C-S и TN-S). Его и нужно подключать к третьему контакту розеток.
В старых домах с немодернизированной проводкой обычно идет четырехпроводный стояк: 3 фазы и совмещенный ноль PEN (система TN-C). Вот тут-то и начинается полнейший бардак и жуткие косяки.
Совет
Начинается все в этажном щите. Часто в нем делают самостоятельное разделение PEN на PE и N.
Правило 1. В однофазных цепях разделять нулевой провод запрещено (ПУЭ – 1.7.132).
Как определить, какая сеть в вашем доме? В относительно нестарых домах подъездные стояки четырехпроводные: три фазы и один совмещенный ноль (PEN). То есть используется трехфазные стояки, соответственно трехфазная цепь.
В очень старых домах, сталинках и хрущевках, часто используется двухпроводный стояк, в котором только фаза и рабочий ноль. Отличительная особенность таких домов – отсутствие подъездных щитов. Стояки идут в шахтах между квартирами, а в самих квартирах специфические «горбатые» щитки. Вот в таких домах, как правило, используется однофазная сеть.
Правило 2. Совмещенный проводник PEN должен быть сечением не менее 16 мм по алюминию или 10 мм по меди.
Правило 3. После разделения PEN на PE и N нельзя вновь их соединять.
Здесь, думаю, пояснений не надо.
Правило 4. Защитный проводник PE должен быть неотключаемым.
То есть на него нельзя ставить автоматы и прочие разъединяющие устройства.
Правило 5. Разделять PEN нужно ДО всех автоматов, рубильников, выключателей.
Лучше сделать так: взять латунную шину и прикрутить ее винтами к щиту, чтобы между ними был контакт. От нулевого стояка через отдельный орех сделать отвод на эту шину. К шине подсоединить защитные провода PE из квартир.
Если не выполнено хотя бы одно их этих правил, то это будет не защита, а опасный для жизни колхоз.
Еще немного о том, чего делать нельзя
1) Соединять перемычкой защитный и нулевой контакты в розетке. Это одна из самых опасных ошибок!
Обратите внимание
При отгорании, повреждении или случайном отсоединении нуля, на корпусе всех приборов, подключенных к таким розеткам, сразу появится опасное фазное напряжение. В этом случае ни УЗО, ни автомат не сработают. Привет, смерть.
Тот же эффект будет при случайной смене фазы и нуля.
2) Сажать нулевой и защитный проводники на один винт в щитке
PE и N обязательно должны быть на разных зажимах (шинах). Причем, каждый провод из отдельной квартиры должен быть зажат отдельным винтом.
3) Занулять на незаземленный (незануленный) щит.
Обычно все щиты имеют прямой контакт с нулевым или защитным стояком (занулены). Но иногда контакта нет, по разным причинам. Например, отвалился соединяющий провод. Зануление на такой щит может привести к появлению на его корпусе опасного напряжения.
На практике, подобного рода косяки встречаются сплошь и рядом, в различных вариантах и сочетаниях. Могу посоветовать не полениться, изучить ПУЭ, а также не доверять свою проводку сомнительным личностям.
Защита при помощи реле напряжения
Данный способ подходит как для частных домов, так и для квартир в многоэтажках. Все что нужно, чтобы защититься от перепадов напряжения и 380в в розетках — это установить внутри вводного щитка модульное реле напряжения.
При этом оно будет защищать приборы и холодильник как от повышенных, так и от пониженных значений. Есть модели, которые дополнительно снабжены встроенной защитой от сверхтоков.
Подробнее ознакомиться с их разновидностями и выбрать для себя подходящую модель, поможет статья ниже.
Если же у вас щиток уже полностью укомплектован, и туда невозможно поместить дополнительные модульные устройства — в этом случае воспользуйтесь небольшими реле напряжения, которые просто втыкаются в розетку.
Хотя функциональность у модульных и розеточных вариантов могут отличаться, свою главную задачу — защиту электро-приборов, они выполняют одинаково хорошо.
На сегодняшний день именно реле напряжения являются наиболее экономичным и эффективным способом борьбы с перепадами напряжения. Стабилизаторы могут подойти далеко не каждому.
Более того, некоторые девайсы даже и не спасут от мгновенного скачка. Так или иначе вызвав пожар, и выход из строя дорогой техники.
Поэтому всегда устанавливайте в своих домах и квартирах именно реле напряжения. Эти устройства средней стоимостью 3000 рублей, помогут вам сэкономить впоследствии сотни тысяч.
Как отличить рабочий ноль и защитное заземление
Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).
Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.
Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.
Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.
Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.
Что произойдет при разнесенном рабочем ноле и защитном заземлении?
При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети. Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли». Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.
Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.
Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.
ЧИТАТЬ ДАЛЕЕ: Трос для прочистки канализации: виды инструментов и как их правильно использовать
Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.
Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.
Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.
Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:
- Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
- Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.
При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.
То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.
Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.
Главная » Заземление » Можно ли заземление соединить с нулем
Говоря в общем, можно заметить, что великая и ужасная сила электричества давно описана, подсчитана, занесена в толстые таблицы.
Нормативная база, определяющая пути синусоидальных электрических сигналах частоты 50 Гц способна ввергнуть любого неофита в ужас своим объемом.
И, несмотря на это, любому завсегдатаю технических форумов давно известно — нет более скандального вопроса, чем заземление.
Масса противоречивых мнений на деле мало способствует установлению истины. Тем более, вопрос этот на самом деле серьезный, и требует более пристального рассмотрения.
Если опустить вступление «библии электрика» (ПУЭ ), то для понимания технологии заземления нужно обратиться (для начала) к Главе 1.7, которая так и называется «Заземление и защитные меры электробезопастности».
Электроустановки в отношении мер электробезопасности разделяются на:
- электроустановки выше 1 кВ в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю), ;
- электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю);
- электроустановки до 1 кВ с глухозаземленной нейтралью;
- электроустановки до 1 кВ с изолированной нейтралью.
Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).
Термин не совсем понятный на первый взгляд — нейтраль и заземляющее устройство на каждом шагу в научно-популярной прессе не встречаются. Поэтому, ниже все непонятные места будут постепенно объяснены.
Совет
Введем немного терминов — так можно будет по крайней мере говорить на одном языке. Возможно, пункты будут казаться «вытащенными из контекста».
Но ПУЭ не художественная литература, и такое раздельное использование должно быть вполне обоснованно — как применение отдельных статей УК.
Впрочем, оригинал ПУЭ вполне доступен как в книжных магазинах, так и в сети — всегда можно обратиться к первоисточнику.
- 1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
- 1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности .
- 1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.
- 1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
- 1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
Правильное напряжение между нулем и землей
Нуль – это обратный путь для цепи переменного тока, которая должна выдерживать его в нормальном состоянии и правильно поддерживать исправную работу электроприборов. Этот ток может быть вызван многими причинами, главным образом из-за дисбаланса фазового тока. Могут быть и другие причины, но величина этого тока находится в аналогии фазного тока, и в немногих случаях она может быть вдвое выше фазного. Таким образом, нейтральный провод всегда считается заряженным (в активной цепи). Этот нейтральный провод подается на землю (заземление), чтобы вторая клемма нейтрального провода была равна нулю.
В то время, как фаза и нуль подключены к основной силовой проводке, земля может быть подсоединена к корпусу оборудования или к любой системе, которая в нормальном состоянии не несет ток, но в случае некоторого отказа изоляции, должна иметь некоторый незначительный заряд. Напряжение между нулем и землей также называется общим. Источники для синфазных напряжений в линиях электропередач различаются. Они могут возникать на частоте линии электропередачи на более высоких показателях (с источниками питания в режиме переключения и нелинейными электронными нагрузками современного оборудования).
Особенности:
- Частота 50/60 Гц является простой, но возможно падение ее до 45 Гц в нейтральном проводнике. Она в балансе в 3-фазных нагрузках увеличивается, поскольку нейтраль обычно уменьшена.
- Ведь, для 3 фаз обычно используется 1 нейтраль, и в идеале этот ток равен 0 (для сбалансированных нагрузок).
- Фазные токи взаимно компенсируют друг друга, но с балансировкой идет большее количество тока, что вызывает их падение, особенно, когда эта нейтраль уменьшена.
Если подключены другие источники на высокой частоте, значит синфазные напряжения рассогласовываются, из-за переключения электроники и индуцированного шума от внешних источников.
Почему это происходит?
Обычно неприятные ощущения покалывания возникают, когда человек касается каких-то заземленных металлических поверхностей, например радиатора батареи под столом и одновременно держит руки на металлической части компьютера. В моем случае это была заземленная металлическая кромка столешницы. Если одновременно коснуться кромки столешницы и макбука, в руках появлялось ощутимое покалывание.
И это вполне нормальная ситуация. Дело в том, что в схеме блока питания компьютера есть фильтр помех, вход фильтра выполнен на двух конденсаторах, подсоединенных с одной стороны на каждый из проводов сети 220вольт, а с другой их общая точка присоединена к корпусу. В результате получается делитель напряжения 220 вольт пополам. Отсюда появляется 110 вольт на корпусе.
Упрощенная схема фильтра помех компьютерного блока питания
На картинке выше показана упрощенная схема фильтра помех в блоке питания. Как видно, оба конденсатора подключены к защитному заземлению (желтый провод E), который в свою очередь подключен к корпусу устройства. Если блок питания подключен в розетку без заземления, то на корпусе появляется половинное напряжение от напряжения в сети. При этом ток в этой цепи протекает небольшой, но его вполне достаточно чтобы вызывать неприятные ощущения или небольшое искрение, если касаться его другим устройством с правильным заземлением. Так можно наблюдать маленькие искры при попытке соединить два устройства кабелем в случаях, когда одно из них подключено в розетку с заземлением, а другое без.