В статье «TL494, что это за «зверь» такой?», мы рассматривали шим-контроллер TL494. В этой статье мы рассмотрим не менее, а наверное даже может быть более распространённые шим-контроллеры серии 184х, 284х, 384х. Все эти шим-контроллеры предназначены для построения импульсных источников питания РЭА, с регулированием по току и напряжению, для управления ключевым каскадом на n-канальном МОП транзисторе. В принципе это одни и те же контроллеры, отличающиеся лишь диапазоном рабочих температур, в котором эти контроллеры надёжно работают.
Самый большой диапазон рабочих температур у контроллеров серии 184х, который достигает -55…+125оС. Контроллеры серии 284х имеют диапазон рабочих температур -40…+85оС, что тоже не плохо и естественно все они будут дороже контроллеров серий 384х, так как самый маленький диапазон рабочих температур, как раз у контроллеров серии 384х, который равен 0…+70оС, то есть эти контроллеры предназначены в основном для установки в аппаратуру, работающую в помещениях. Отечественные аналоги для этих контроллеров следующие;
Для контроллеров х842 — КР1033ЕУ10, К1033ЕУ15А, 1114ЕУ7/ИМ.
Для контроллеров х843 — К1033ЕУ15Б, 1114ЕУ8/ИМ.
Для контроллеров х844 — КР1033ЕУ11, К1033ЕУ16А, 1114ЕУ9/ИМ.
Для контроллеров х843 — К1033ЕУ16Б, 1114ЕУ10/ИМ.
Диапазон рабочих температур отечественных аналогов следующий; Для контроллеров серии 1033ЕУхх — составляет от -10 до +70оС. В некоторых «даташитах» нижний рабочий порог этих контроллеров указывается от 0оС. То есть эта серия является полным аналогом контроллеров серии 384х. Для контроллеров серии 1114ЕУхх, диапазон рабочих температур составляет от -60 до +125 °С
По традиции давайте посмотрим, что у него имеется внутри.
Введение
Сетевой источник питания — один из самых ответственных узлов в структуре электронной аппаратуры. Наиболее важные параметры сетевого преобразователя: рабочий диапазон входного напряжения, потребляемая мощность в дежурном режиме, габаритные размеры, надежность, электромагнитная совместимость и себестоимость. Подавляющее большинство современной аппаратуры с питанием от сети использует импульсные источники питания. Сетевой импульсный источник питания обеспечивает гальваническую развязку выходных цепей от сетевого напряжения. Развязка обеспечивается за счет использования импульсного трансформатора в силовой цепи и оптрона в цепи обратной связи.
Ключевым элементом импульсного сетевого источника питания является микросхема ШИМ-контроллера. Основная функция ШИМ-контроллера — управление силовым транзистором (транзисторами), стоящим в первичной цепи импульсного трансформатора, и поддержание выходного напряжения на заданном уровне, используя сигнал обратной связи. Структура современных ШИМ-контроллеров обеспечивает и дополнительные функции, повышающие эффективность и надежность источника питания:
- ограничение тока и скважности импульсов в цепи управления силовыми транзисторами;
- плавный запуск преобразователя после подачи питания (Soft Start);
- встроенный динамический источник питания от высоковольтного входного напряжения;
- контроль уровня входного напряжения с устранением «провалов» и «выбросов»;
- защита от КЗ в цепи силового трансформатора и выходных цепей выходного выпрямителя;
- температурная защита контроллера, а также ключевого элемента;
- блокировка работы преобразователя при пониженном и повышенном входном напряжении;
- оптимизация управления для дежурного режима и режима с пониженным током в нагрузке (пропуск циклов или переход на пониженную частоту преобразования);
- оптимизация уровня ЭМИ.
Рассматриваемые в статье ШИМ-контроллеры не имеют встроенного силового транзистора, управляющего током в первичной цепи силового трансформатора.
Состав.
В его составе имеется:
— источник опорного напряжения на 5В с внешним выводом 8; — схема защиты от снижения напряжения питания (UVLO). — генератор пилообразного напряжения (генератор); — компаратор тока, используется в основном по сигналу ограничения тока; — усилитель ошибки, используется в основном по напряжению; — схема управления работой выходного каскада;
Микросхемы UCx844 и UСx845 имеют встроенный счетный триггер (обозначенный пунктиром), который служит для получения максимального рабочего цикла (шим-заполнения), равного 50%. Поэтому для задающих генераторов этих микросхем, нужно установить частоту переключения вдвое выше необходимой. Генераторы микросхем UCх842 и UCх843 устанавливаются на необходимую частоту переключения. Максимальная рабочая частота задающих генераторов контроллеров семейства UCх842/3/4/5, может достигать 500 кГц. Чем ещё отличаются друг от друга эти микросхемы. Это разным напряжением питания для этих микросхем. Смотрим таблицу ниже;
НАПРЯЖЕНИЕ ВКЛЮЧЕНИЯ — 16 В, ВЫКЛЮЧЕНИЯ — 10 В | НАПРЯЖЕНИЕ ВКЛЮЧЕНИЯ — 8.4 В, ВЫКЛЮЧЕНИЯ — 7.6 В | ДИАПАЗОН РАБОЧИХ ТЕМПЕРАТУР | КОЭФФИЦИЕНТ ЗАПОЛНЕНИЯ РАБОЧИЙ ЦИКЛ |
UC1842 | UC1843 | -55°С… +125°С | до 100% |
UC2842 | UC2843 | -40°С… +85°С | |
UC3842 | UC3843 | 0°С… +70°С | |
UC1844 | UC1845 | -55°С… +125°С | до 50% |
UC2844 | UC2845 | -40°С… +85°С | |
UC3844 | UC3845 | 0°С… +70°С | |
Ещё микросхемы с суффиксом «А», например UC3842A, имеют в два раза меньший ток запуска — 0,5 мА. Микросхемы без суффикса «А» имеют пусковой ток около 1,0 мА. Да, ещё совсем забыл про корпуса микросхем. Мы здесь рассматриваем в основном микросхемы в восьми-выводном корпусе DIP-8 (может быть суффикс «N», так же может быть керамический CERDIP-8 корпус (суффикс «J»), или SOIC-8 корпус (суффикс «D8»). Цоколёвки восьми-выводных микросхем полностью совпадают. Так же микросхемы могут выпускаться и в 14-ти выводном «SOIC-14» корпусе, с суффиксом «D», и могут быть и в корпусе «PLCC-20» (суффикс «Q»). Цоколёвки микросхем в этих корпусах отличаются. Отечественные микросхемы серии 1114, выполнены в корпусе Н02.8-2В. Это десяти-выводной металлокерамический корпус (ниже на рисунке) по пять выводов с каждой стороны, средние выводы из которых, являются просто технологической перемычкой и не учитываются. То есть получаются те же восемь выводов.
Теперь по маркировке можно определить, что это за микросхема, например UC3843AD; — это шим-контроллер с пониженным током запуска (500 мкА), с включением в работу при достижении напряжения питания 8,4 вольта и выключением при достижении порога напряжения питания 7,6 вольта, с рабочим циклом до 100% и выполнена в корпусе «SOIC-14».
Базовые параметры режима управления силовым каскадом
В зависимости от требований конкретного применения в контроллере могут использоваться разные схемы выходного каскада управления силовым ключом, тип управления по цепи обратной связи (по току или по напряжению), а также различный частотный режим преобразования. Тип выходного каскада ШИМ-контроллера определяет и топологию преобразователя.
Типы топологии сетевых преобразователей:
- обратноходовой;
- прямоходовой;
- двухтактный;
- полумостовой;
- мостовой;
- квазирезонансный.
В таблице 1 показаны характеристики базовых топологий схем, используемых при построении импульсных сетевых источников питания.
Обратноходовой преобразователь
Основная схема, по который выполнены многие маломощные импульсные источники питания, — это обратноходовой преобразователь (рис. 1). Эта схема преобразует одно постоянное напряжение в другое, регулируя выходное напряжение посредством широтно-импульсной модуляции (ШИМ) либо частотно-импульсной модуляции (ЧИМ). Модуляция ширины импульса — это метод управления, основанный на изменении отношения длительности включенного состояния ключа к выключенному при постоянной частоте. В обратноходовом преобразователе длительность включенного состояния ключа больше длительности выключенного состояния для того, чтобы большее количество энергии было запасено в трансформаторе и передано в нагрузку.
Рис. 1. Типовая схема Flyback-преобразователя
Прямоходовой преобразователь
Другая популярная конфигурация импульсного источника питания известна как схема прямоходового преобразователя и показана на рис. 2. Хотя эта схема очень напоминает обратноходовую схему, имеются и некоторые фундаментальные различия. Прямоходовой преобразователь накапливает энергию не в трансформаторе, а в выходной катушке индуктивности (дросселе). Точки, обозначающие начало обмоток на трансформаторе, показывают, что, когда ключевой транзистор открыт, во вторичной обмотке появляется напряжение, и ток течет через диод VD1 в катушку индуктивности. У этой схемы большая продолжительность включенного состояния ключа относительно выключенного состояния, более высокое среднее напряжение во вторичной обмотке и более высокий выходной ток нагрузки.
Рис. 2. Прямоходовой преобразователь напряжения сети
Двухтактный прямоходовой преобразователь
На рис. 3 показан двухтактный преобразователь, который является разновидностью прямоходового преобразователя за исключением того, что оба ключа включены в цепь первичной обмотки трансформатора.
Рис. 3. Схема двухтактного прямоходового преобразователя
В номенклатуре ШИМ-контроллеров ON Semi представлены микросхемы, имеющие различную топологию выходного каскада, тип управления, частотный режим управления, а также дополнительные встроенные функции. В таблице 2 представлены основные параметры ШИМ-контроллеров ON Semi, выпускаемых в настоящее время.
Таблица 2. Основные параметры ШИМ-контроллеров ON Semi для сетевых импульсных источников питания
Тип | Топология | Режим регулирования | Частота, кГц | Режим Stand-by | Защита от пониженного входного напряжения UVLO, В | Защита от КЗ на выходе | Блокировка | Режим Soft Start |
NCL30000 | Flyback | По току | До 300 | — | — | — | — | — |
NCL30001 | Flyback | По току | До 150 | — | — | — | — | — |
NCP1237 | Flyback | По току | 65 | — | — | + | + | + |
NCP1238 | Flyback | По току | 65 | — | — | + | + | + |
NCP1288 | Flyback | По току | 65 | — | 10 | + | + | + |
NCP1379 | Flyback | По току | Варьируется | + | 9 | + | + | + |
NCP1380 | Flyback | По току | Варьируется | + | 9 | + | + | + |
NCP1252 | Forward | По току | До 500 | + | 9-10 | + | + | + |
CS51221 | Forward | По напряжению | До 1000 | — | + | — | + | + |
CS5124 | Flyback | По току | 400 | — | + | — | — | + |
MC33025 | Push-Pull | По току или по напряжению | 1000 | — | + | + | — | + |
MC33060 | Flyback | По напряжению | 200 | — | + | — | — | + |
MC33067 | Flyback | По напряжению | 1000 | — | + | + | — | + |
MC33364 | Flyback | По току | Варьируется | + | + | — | — | — |
MC34060 | Мультирежимный | По напряжению | 200 | — | + | — | — | — |
MC34067 | Резонансный | По напряжению | — | — | + | + | — | — |
MC44603 | Flyback | По току или по напряжению | До 250 | + | 9 | + | + | + |
NCP1200 | Flyback | По току | 100 | + | — | + | — | — |
NCP1203 | Flyback | По току | 100 | + | + | + | — | — |
NCP1207 | Flyback | По току | До 1000 | + | + | + | + | + |
NCP1216 | Flyback | По току | 100 | + | — | + | — | + |
NCP1217 | Flyback | По току | 100 | + | + | + | + | + |
NCP1219 | Flyback | По току | 100 | + | 9,4 | + | + | + |
NCP1230 | Flyback | По току | 100 | + | + | + | + | + |
NCP1252 | Flyback/Forward | По току | До 500 | + | 9-10 | + | + | + |
NCP1271 | Flyback | По току | 100 | + | + | + | + | + |
NCP1294 | Flyback | — | До 1000 | + | + | + | + | — |
NCP1308 | Flyback | По току | Варьируется | + | + | + | + | + |
NCP1337 | Flyback | По току | Варьируется | + | + | + | + | + |
NCP1338 | Flyback | По току | Варьируется | + | + | + | + | + |
NCP1351 | Flyback | По току | Варьируется | — | — | + | + | — |
NCP1377 | Flyback | По току | Варьируется | + | + | — | + | + |
NCP1379 | Flyback | По току | Варьируется | + | 9 | + | + | + |
NCP1380 | Flyback | По току | Варьируется | + | 9 | + | + | + |
NCP1381 | Flyback | По току | Варьируется | + | + | + | + | + |
NCP1382 | Flyback | По току | Варьируется | + | + | + | + | + |
NCP1392 | Half-Bridge | По току | 250 | — | 9 | — | — | + |
NCP1393 | Half-Bridge | По току | 250 | — | 9 | — | — | + |
NCP1395 | Push-Pull | По напряжению | 1000 | + | + | + | + | + |
NCP1396 | Push-Pull | По напряжению | До 500 | + | + | + | + | + |
NCP1397 А/В | Half-Bridge | По напряжению | 50-500 | — | 9,5/10,5 | + | + | + |
NCP1562 | Flyback | По напряжению | Дo 500 | — | + | + | + | + |
NCV3843, UC3843 | Flyback | По току | 52 | — | + | + | — | + |
UC2842/43/44 | Flyback | По току | 52 | — | + | + | — | — |
UC2843 /44/45 | Flyback | По току | 52 | — | + | + | — | — |
UC3842 /44/45 | Flyback | По току | 52 | — | + | + | — | — |
UC3845 | Push-Pull | По току | 52 | — | + | + | — | + |
Следует отметить, что структура микросхем ШИМ-контроллеров последних разработок очень похожа. Основные различия определяются типом топологии, режимом регулирования (по току/напряжению), режимом частотного управления (частота постоянная или варьируемая), а также логикой работы при обнаружении критических ситуаций. Структура ШИМ-контроллера содержит логику, задающую автомат состояний. Схема автомата переходов реализована на компараторах, триггерах, таймерах и элементах логики. Основные состояния контроллера: начальный пуск частотного генератора, выход на рабочий режим, адаптивное слежение за током нагрузки и выбор оптимального режима, обнаружение критических ситуаций, переход в аварийный режим, автовосстановление после сбоев.
Выходное управляющее напряжение (OUT)
Количество выводов микросхемы определяется её конструкцией и принципом работы. Не всегда удается сразу разобраться в сложных терминах, но попробуем выделить суть. Существуют микросхемы на 2-х выводах, управляющие двухтактными (двухплечевыми) каскадами (примеры: мост, полумост, 2-тактный обратный преобразователь). Существуют и аналоги ШИМ-контроллеров для управления однотактными (одноплечевыми) каскадами (примеры: прямой/обратный, повышающий/понижающий, инвертирующий).
Помимо этого, выходной каскад может быть по строению одно- и двухтактным. Двухтактный используется в основном для управления полевым транзистором, зависящим от напряжения. Для быстрого закрытия необходимо добиться быстрой разрядки емкостей «затвор — исток» и «затвор — сток». Для этого как раз и используется двухтактный выходной каскад контроллера, задачей которого является обеспечение замыкание выхода на общий кабель, если требуется закрыть полевой транзистор.
Для контроля над биполярным транзистором двухтактный каскад не используется, так как управление осуществляется с помощью тока, а не напряжения. Для закрытия биполярного транзистора достаточно всего лишь прекратить протекание тока через базу. При этом замыкание базы на общий провод необязательно.
Защита и безопасность работы
Сетевые преобразователи должны обеспечивать достаточный уровень безопасности при работе без деградации характеристик силовых элементов в случае возникновения токовых перегрузок вследствие коротких замыканий в обмотках трансформатора или в нагрузке. КЗ обнаруживается в первую очередь по внезапному исчезновению сигнала обратной связи через оптрон. Нужно отключить драйвер выходного транзистора, чтобы предотвратить перегрев транзистора и насыщение трансформатора. Однако и в процессе запуска сигнал обратной связи также отсутствует некоторое время. Нужно идентифицировать эти две ситуации. В некоторых недорогих контроллерах защита от КЗ не реализована. В таких случаях возникновение КЗ приведет к неконтролируемым последствиям и может в считанные секунды привести к разрушению силовых элементов преобразователя. КЗ может быть нескольких типов — в самой нагрузке, в обмотках, в электролитическом конденсаторе выходного выпрямителя, выпрямительных диодах. Введение детерминируемых состояний увеличивает сложность автомата, но повышает надежность работы преобразователя.
Функция блокировки при аварийных ситуациях
При выборе подходящего для применения контроллера особое внимание разработчик должен обращать на логику автомата состояний, особенно на логику отработки аварийных ситуаций. Переход в аварийный режим при обнаружении критических ситуаций может предусматривать как принудительное ограничение тока, так и полную блокировку работы преобразователя. При блокировке останавливается задающий ШИМ-генератор и запрещается подача активного сигнала для силового транзистора. В зависимости от типа или модификаций микросхем возможны два сценария блокировки (Latch).
В первом случае после срабатывания блокировки преобразователь «защелкивается» в этом состоянии и не меняет его, даже если условие, вызвавшее это состояние, уже пропало. Восстановление работы преобразователя возможно лишь после выключения сетевого напряжения и повторного включения питания.
Во втором случае реализуются попытки автовосстановления (autorecovery) нормальной работы преобразователя. Для этого в структуре контроллера запускается таймер на время около 1,5 с. После истечения этого времени контроллер вновь проверяет наличие критических ситуаций, и если они сохраняются, блокировка остается. В этом случае светодиодный индикатор сетевого источника будет мигать с периодом 1,5 с. Автовосстановление происходит только при срабатывании по понижению напряжения.
Встроенный динамический источник питания
Встроенный динамический источник тока стартового питания (Dynamic Self-Supply, DSS) гарантирует надежный запуск преобразователя и в то же время — низкое потребление в выключенном состоянии. Встроенный динамический источник питания значительно упрощает дизайн импульсного трансформатора, потому что отпадает необходимость в использовании дополнительной обмотки для питания микросхемы.
Источник динамического питания обеспечивает питание контроллера при старте преобразователя, а также питает схему контроллера в тех случаях, когда напряжение питания на обмотке питания контроллера кратковременно пропадает, например при перегрузках. Стартовый генератор тока микросхемы обеспечивает плавный запуск преобразователя. После запуска преобразователя питание производится от питающей обмотки трансформатора. Есть модификации микросхем, в которых нет источника динамического питания и питание производится всегда только от линии высокого напряжения. С одной стороны, это приводит к повышению потребления, а с другой — не требует наличия дополнительной питающей обмотки трансформатора. Вход высоковольтного питания имеет детектор пониженного питания, который позволяет выключить контроллер (brown-out condition) или слишком высокое напряжение (line overvoltage). Эта защита работает как с переменным, так и выпрямленным входным напряжением и не зависит от пульсаций напряжения. В DSS используется синхронный пиковый детектор.
Режим пониженной частоты
В контроллерах последних разработок применяется режим с переходом на пониженную частоту (Frequency foldback). Переход на пониженную частоту происходит, когда сигнал обратной связи становится ниже порога. Снижение частоты преобразования позволяет уменьшить потребление в дежурном режиме.
Режим Soft-Skip
Режим пропуска частотных циклов позволяет уменьшить потребление в дежурном режиме. Режим активизируется по уменьшении уровня амплитуды сигнала обратной связи ниже установленного порога. Soft-Skip и Frequency foldback реализуются в одном структурном модуле контроллера.
Уменьшение ЭМИ за счет джиттера внутреннего генератора (Internal frequency jittering)
Для контроллеров, работающих на фиксированной частоте, может использоваться прием введения малой частотной модуляции около центральной частоты (джиттер). Наличие джиттера не влияет на работу преобразователя, однако позволяет «размыть» спектр ЭМИ и таким образом уменьшить амплитуду электромагнитного излучения, индуцируемого в цепи трансформатора и других силовых цепей преобразователя.
Ramp compensation — компенсация пилообразности сигнала обратной связи
В последних разработках ШИМ-контрол-леров используется компенсация пилообраз-ности сигнала обратной связи. Это позволяет улучшить режим стабилизации в процессе регулирования.
Dual level OCP — двухуровневая защита от токовой перегрузки
Защита от повышенного тока (Overcurrent Protection) в нагрузке и силовых цепях имеет два различных уровня. На низком уровне контроллер сохраняет способность к регулированию, но имеет долгий старт. На высоком уровне при потере сигнала регулирования запускается обычный таймер. Это позволяет источнику питания кратковременно работать в режиме критической мощности. Токовая защита зависит только от сигнала в цепи обратной связи.
Приведенные выше функции в полной мере реализованы в последних разработках микросхем ШИМ-контроллеров ON Semi — сериях микросхем NCP1237/38/88 и NCP1379/80.
Назначение выводов микросхемы.
Давайте теперь кратко рассмотрим назначение выводов и работу микросхемы (её блоков), а потом посмотрим это практически;
1. CMP — выход усилителя ошибки. Служит для коррекции АЧХ усилителя ошибки, с этой целью между выводами 1 и 2 обычно подключается конденсатор емкостью около 100 пФ. С помощью этого вывода, можно установить коэффициент усиления усилителя ошибки с помощью дополнительного резистора, который подключается к этим же выводам, что и конденсатор, а так же ещё и управлять работой контроллера. Если на этом выводе уменьшить напряжение ниже 1-го вольта, то на выходе микросхемы (вывод 6) будет уменьшаться длительность импульсов, уменьшая при этом выходное напряжение (мощность) БП.
2. VFB — вход обратной связи усилителя ошибки. Используется в основном для регулировки (стабилизации) выходного напряжения. Если напряжение на этом выводе превысит 2,5 вольта (подаётся с внутреннего источника на не инвертирующий вход усилителя ошибки), то длительность (скважность) выходных импульсов начнёт уменьшаться, уменьшая тем самым выходное напряжение БП.
3. IS — сигнал обратной связи по току. Этот вывод обычно присоединен к резистору в цепи истока ключевого транзистора. В момент перегрузки МОП транзистора, напряжение на резисторе увеличивается и при увеличении его более 1-го вольта, импульсы на выходе 6 прекращаются и выходной транзистор закрывается.
4. RC — это вход генератора пилообразного напряжения и сюда подключается задающая RC- цепочка, для установки частоты внутреннего генератора. Резистор от этого вывода подключается к выводу 8 — это вывод опорного напряжения 5 вольт, а конденсатор к общему проводу. В основном на практике частота задающего генератора выбирается в диапазоне 35…85 кГц, и в RC-цепочке не рекомендуется использовать керамические конденсаторы. Частота генератора рассчитывается по следующей формуле; — 1,72/R(кОм) * С(мкФ).
5. GND — общий вывод для первичной цепи. Этот вывод не должен быть напрямую соединён с общим выводом вторичных цепей схемы.
6. OUT — выход ШИМ–контроллера, подключается к затвору ключевому транзистору через резистор или параллельно соединенные резистор и диод (анодом к затвору).
7. VCC — вход питания ШИМ-контроллера, на этот вывод микросхемы подаётся напряжение питания в диапазоне от 16 вольт до 34. Более 34 вольт на микросхему подавать не рекомендуется, так как микросхема обладает защитой от перенапряжения, и если напряжение питания на ней превысит 34 вольта — микросхема отключится.
8. REF — выход внутреннего источника стабильного опорного напряжения 5 вольт, ток его нагрузки может достигать 50 мА.
Структура ШИМ-контроллеров NCP1237, NCP1238, NCP1287 и NCP1288
Микросхемы этих типов практически идентичны по цоколевке и схеме включения. В них используется режим управления по току с фиксированной частотой преобразования. Микросхемы предназначены для применения в обратноходовых преобразователях (Flyback) c гальванической развязкой (трансформатор, управление — обратная связь по напряжению через оптрон, по току — через дополнительную обмотку силового трансформатора). На рис. 4 показана структурная схема ШИМ-контроллера NCP1237.
Рис. 4. Структурная схема ШИМ-контроллера NCP1237
Встроенная схема Dynamic Self-Supply (DSS) упрощает проектирование и обеспечивает уменьшение дополнительных элементов. Наличие режима Soft-Skip с пропуском циклов обеспечивает повышение эффективности преобразования при малых нагрузках с сохранением низкого потребления в дежурном режиме. Также поддерживается и понижение частоты преобразования до 31 кГц (frequency foldback) с гистерезисом. Порог включения режима — 1,5 В, обратный переход в рабочий режим происходит при превышении порога 1 В. При понижении напряжения сигнала обратной связи ниже порога 0,7 В активизируется режим пропуска циклов Soft-Skip, который позволяет уменьшить потребление дополнительно, а также уменьшить возникновение акустического шума на трансформаторе и конденсаторах, использовать более дешевые трансформаторы. Встроенный двухпороговый защитный таймер служит для защиты при сбоях и нарушениях работы схемы управления вследствие скачков тока. Встроенная схема формирования джиттера частоты обеспечивает «размывание» спектра и уменьшение пиковых уровней ЭМИ. Контроллер также включает новую схему высоковольтного каскада, которая совместно со схемой старта позволяет оценивать уровень сигнала с токового датчика как в цепи переменного напряжения, так и в цепи постоянного выпрямленного напряжения. ON Semiconductor использует высоковольтную технологию входных цепей контроллера, поэтому NCP1288 может подключаться по питающим цепям непосредственно к шине высокого напряжения питания.
Режим блокировки для NCP1237 (рис. 5) может активизироваться по одному из двух условий: при повышении уровня напряжения выше порогового на входе Latch за счет перенапряжения или при уменьшении напряжения ниже другого заданного порога за счет терморезистора с отрицательным температурным коэффициентом, стоящего на силовом транзисторе.
Рис. 5. Типовая схема включения ШИМ-контроллера NCP1237
Токовый источник HV startup обеспечивает заряд конденсатора VCC до порогового напряжения VCC (on) и работает, пока входное напряжение более VHV (start), обеспечивая режим включения. Затем контроллер производит плавный пуск Soft-Start, во время которого ток потребления линейно возрастает перед включением режима регулирования. Во время периода плавного старта блокировка игнорируется, а ток блокировки удваивается, обеспечивая быстрый предзаряд конденсатора на входе вывода блокировки.
В микросхемах реализована защита от короткого замыкания на выходе.
Частота преобразования — 65/100/133 кГц и определяется модификацией микросхем. Микросхемы рассчитаны на использование в расширенном температурном диапазоне от -40 до +125 °С, что особенно актуально для промышленных приложений. Типовые применения контроллеров:
- сетевые источники питания принтеров, мониторов;
- зарядные устройства для аккумуляторов;
- встроенные сетевые источники бытовой аппаратуры.
Как это всё работает.
Микросхема работает в диапазоне напряжений, от порога выключения до 30 В. Для её запуска требуется первоначальное превышение питающего напряжения над порогом включения. Пока напряжение питания не достигнет порога включения, микросхема не работает и потребляет незначительный ток: менее 500 мкА. Как только напряжение превысит порог включения микросхемы, она запускается и начинают работать все её узлы. Ток потребления микросхемой возрастает до 10-12 мА. При понижении питающего напряжения до порога отключения — микросхема отключается, ток её потребления опять падает. Напряжение на выводе VCC ограничивается встроенным стабилитроном на уровне 34 В. Это дает возможность запустить микросхему от источника высокого напряжения, например выпрямленного сетевого напряжения через высокоомный резистор Rin, что позволяет организовать первоначальный запуск микросхемы (без дежурного блока питания), как показано на рисунке ниже.
Теперь давайте посмотрим на практике, как работает эта микросхема. Для этого на макетной плате соберём вот такую схему. Это более, чем достаточно для проверки её функциональности.
Запитывать нашу конструкцию будем от регулируемого блока питания, выходное напряжение выставим в районе 14-16 вольт, что вполне достаточно. Контроль выходных напряжений и сигналов будем производить с помощью осциллографа.
Выходной сигнал будем контролировать на выводе 6 микросхемы. Сначала поставим на макетную плату микросхему UC3843 и посмотрим работу генератора пилообразного напряжения, и что у неё на выходе. Первый луч осциллографа подключим на выход МС (вывод 6), второй к генератору пилообразного напряжения (вывод 4). Движки переменных резисторов вниз по схеме, чтобы не оказывалось влияния на работу микросхемы.
Видим, что с каждым импульсом генератора пилообразного напряжения, на выходе присутствует один импульс с коэффициентом заполнения около 100% (несколько процентов мёртвое время). То есть выходная частота соответствует частоте генератора. Возьмём теперь микросхему UC3845, и сравним выходное напряжение с 3843.
Что мы видим? На один выходной импульс приходится два импульса генератора пилообразного напряжения. То есть выходная частота этой микросхемы будет в два раза меньше частоты задающего генератора. Коэффициент заполнения выходных импульсов здесь около 50%. Посмотрим теперь как работает токовая защита. Для этого второй луч подключаем к выводу 3 микросхемы (первый на выходе МС и нулевой уровень этого луча на втором делении снизу). Нулевой уровень второго луча находится внизу экрана ниже нулевого уровня первого луча (луч на уровне одного деления).
Чувствительность второго луча ставим 0,5 вольт на деление. На выводе 3 входное напряжение пока отсутствует и импульсы на выходе (вывод 6) присутствуют. Начинаем поднимать входное напряжение на выводе «3», имитируя увеличение тока через выходной транзистор.
Что мы видим? Как только входное напряжение на выводе «3» достигло порога в 1,0 вольт (луч поднялся на два деления), на выходе микросхемы импульсы прекратились. Давайте посмотрим теперь, как происходит регулировка выходного напряжения блока питания микросхемой. Второй луч для этого теперь подключим к выводу «2» микросхемы.
На выводе «2» входное напряжение отсутствует. На выводе «6» имеются выходные импульсы. Чувствительность второго луча (нижнего) установлена 1,0 вольт на деление, он в самом низу экрана. Начинаем потихоньку переменным резистором поднимать входное напряжение на выводе «2» микросхемы до тех пор, пока не будет какого либо изменения на выходе. Нижний луч начал подниматься вверх.
Что мы видим? Как только входное напряжение на выводе «2» поднялось до 2,5 вольт, может чуть повыше (нижний луч поднялся вверх на два с половиной деления), выходные импульсы на выводе «6» прекратились. Давайте посмотрим теперь, что будет происходить на выходе усилителя ошибки при такой-же ситуации, то есть на выводе «1» микросхемы. Второй луч подключаем к выводу «1», Чувствительность луча выставим 0,5 вольт на деление, напряжение на входе (вывод «2») опять уменьшаем.
Включаем питание, входное напряжение на выводе «2» минимально, на выводе «1» выходное напряжение в районе 2,5 вольт (нижний луч поднят на пять делений). Начинаем переменным резистором постепенно увеличивать напряжение на «2» выводе микросхемы. Верхний луч пополз вниз, то есть напряжение на выводе «1» начало уменьшаться. Увеличиваем переменным резистором ещё больше входное напряжение на выводе «2», до каких либо изменений в выходном напряжении на выводе «6».
Всё, импульсы на выходе микросхемы прекратились, первый луч на своей нулевой отметке (второе деление снизу), напряжение на выводе «1» около 0,7 вольта (второй луч поднят чуть больше одного деления от своей нулевой линии).
Теперь всё, что мы увидели на практике, постараюсь теоретически изложить ниже. В этой микросхеме стабилизация напряжения и токовая защита, происходит не так, как в ранее рассмотренной нами микросхеме TL494. Здесь мы не увидим плавное изменение ширины выходных импульсов от изменения входного напряжения на входе усилителя ошибки (вывод «2»), или на входе компаратора тока (вывод «3»), так как выходными импульсами микросхемы (выходным каскадом) управляет компаратор (компаратор тока), и он при превышении каких либо порогов, просто выключает выходной каскад, а потом при нормализации напряжений и токов — включает. Инвертирующий вход этого компаратора внутренне смещён на 1,0 вольт. Ограничение (отключение) выходных импульсов происходит, если на выводе «3» компаратора превысить этот порог в 1,0 вольт, или если на выводе «1» уменьшить напряжение так, чтобы оно не превышало падения напряжения на двух последовательно включенных диодах ( у нас получилось около 0,7 вольт). Напряжение на этом выводе достигает такой величины, если входное напряжение на входе усилителя ошибки (вывод «2») превысит 2,5 вольта, потому что на не инвертирующий вход этого усилителя ошибки по внутренним цепям подаётся напряжение 2,5 вольт, то есть что-то похоже на работу TL-431. Ещё вывод «1» можно использовать, как второй контур регулирования выходного напряжения, если к этому выходу, например подключить транзистор, управляемый светодиодом (оптрон), который связан с выходом БП. Можно так же по этому входу блокировать (аварийно отключить) микросхему, замыкая его транзистором, или ещё чем либо на общий провод.
Если объяснить более понятным языком, то управление выходным напряжением (током) осуществляется здесь тоже усилителями ошибки, как и в ТЛ494, только в той разнице, что в ТЛ494 изменяется скважность выходных импульсов, а здесь управление происходит пачками выходных импульсов. То есть при включении БП, и на выходе МС появляются импульсы. Напряжение на выходе БП начинает расти, и при достижении установленного порога (например 12 вольт), когда до этого напряжения зарядится конденсатор фильтра — импульсы на выходе МС прекращаются. Подключенная нагрузка потребляет ток и конденсатор разряжается. Выходное напряжение начинает понижаться и в этот момент (после определённого порога) включается МС и на выход опять поступают импульсы. После нескольких импульсов (пачки импульсов) конденсатор снова подзаряжается до установленного порога и импульсы опять прекращаются. Если ток нагрузки небольшой, то для подзаряда конденсатора хватает нескольких импульсов (короткая пачка) и соответственно проходит больше времени для подачи на выход следующей пачки импульсов (больше расстояние между пачками импульсов). При увеличении тока нагрузки, соответственно нужно большее кол-во импульсов в пачке (длинная пачка), чтобы зарядить конденсатор, и соответственно также уменьшается время и между пачками импульсов. Если мы представим, что пачка импульсов — это один импульс (который может быть и уже и шире), а время (расстояние) между пачками — это время между каждым импульсом — здесь получается полный аналог ШИМ , как и ТЛ494.
Выходной каскад микросхемы выполнен по полу-мостовой схеме и рассчитан на средний ток около 200 мА, пиковый же ток может достигать 1,0 А и на этом уровне ограничивается микросхемой. Выходной каскад может управлять, как мощным полевым, так и биполярным транзистором.
Ну вот по этим микросхемам, в принципе всё, что хотел сказать. В интернете очень много по ним написано, и есть много технической документации. Если хотите узнать по ним что-то большее и более углубленно, поисковик Вам в руки.
Функциональные отличия микросхем
Для модификаций микросхем NCP1238B и NCP1288B есть функции поддержки автовосстановления (autorecovery). NCP1237 имеет схему двухпороговой OCP, в то время как NCP1238 его не имеет. Базовые различия между микросхемами серии показаны в таблице 3.
Таблица 3. Базовые различия модификаций ШИМ-контроллеров серии NCP12xx
Модификация | DSS | Dual OCP | Latch | Auto Recovery |
NCP1237A | + | + | + | — |
NCP1237B | + | + | — | + |
NCP1238A | + | — | + | — |
NCP1238B | + | — | — | + |
NCP1287A | Только HV | + | + | — |
NCP1287B | Только HV | + | — | + |
NCP1288A | Только HV | — | + | — |
NCP1288B | Только HV | — | — | + |
ШИМ-контроллеры в составе блоков питания
Блок питания является неотъемлемым элементом большинства современных девайсов. Срок его эксплуатации практически ничем не ограничен, но от его исправности во многом зависит безопасность работы подконтрольного устройства. Спроектировать блок питания можно и своими руками, изучив принцип его действия. Основная цель – формирование нужной величины напряжения питания, обеспечение её стабильности. Для большинства мощных устройств гальванической развязки, основанной на действии трансформатора, будет недостаточно, да и подобранный элемент явно удивит пользователей своими габаритами.
Увеличение частоты тока питания позволяет существенно уменьшить размеры используемых компонентов, что обеспечивает популярность блоков питания, работающих на частотных преобразователях. Один из самых простых вариантов реализации питающих элементов – блок-схема, состоящая из прямого и обратного преобразователей, генератора и трансформатора. Несмотря на видимую простоту реализации таких схем, на практике они демонстрируют больше недочетов, чем преимуществ. Большинство получаемых показателей стремительно изменяются под влиянием скачков напряжения питания, при загрузке выхода преобразователя и даже при увеличении температуры окружающей среды. ШИМ-контроллеры для блоков питания дают возможность стабилизировать схему, а также воплотить множество дополнительных функций.
Составляющие схемы блоков питания с ШИМ-контроллерами
Типовая схема состоит из генератора импульсов, в основе которого лежит ШИМ-контроллер. Широтно-импульсная модуляция дает возможность собственноручно контролировать амплитуду сигнала на выходе ФНЧ, изменяя при необходимости длительность импульса или его скважность. Сильная сторона ШИМ – высокий КПД усилителей мощности, в особенности звука, что в целом обеспечивает устройствам довольно обширную сферу применения.
ШИМ-контроллеры для блоков питания могут использоваться в схемах с различными мощностями. Для реализации относительно маломощных схем необязательно включать в их состав большое число элементов – в качестве ключа может выступать обычный полевой транзистор.
ШИМ-контроллеры для источников питания большой мощности могут иметь также элементы управления выходным ключом (драйверы). В качестве выходных ключей рекомендуется использовать IGBT-транзисторы.