Отсутствие заземления электрооборудования или неправильное его выполнение может привести к производственному травматизму, выходу из строя приборов автоматизации или неправильной их работе, погрешности показаний измерительной техники.
Это происходит в результате пробоя изоляции между токоведущими частями и корпусом оборудования. В результате на корпусе появляется напряжение и протекает электрический ток, который может нанести травму человеку и привести к сбоям в работе электрических устройств. Чтобы этого избежать, часть установки, не находящуюся в нормальном состоянии под напряжением, соединяют с заземляющим устройством. Этот процесс называется заземлением.
Классификация заземляющих устройств
Система заземления электроустановок – комплекс, состоящий из заземляющего контура и проводников, соединяющих его с корпусами оборудования для обеспечения стекания в землю избыточного тока, появившегося в результате попадания фазы на корпус. Действующая в России классификация устройств заземления (далее УЗ) подразумевает градацию по следующим признакам:
- Виду нейтрали. По наличию соединения с заземляющим устройством: заземленная;
- изолированная.
Организация системы заземления регулируется правилами устройства электроустановок (ПУЭ). Документ регламентирует порядок и признаки классификации заземляющих систем. Для обозначения маркировки используются буквы английского алфавита:
T – заземление;
N – нейтраль;
I – изолированное;
C – общая;
S – раздельная.
Такой вид маркировки позволяет определить используемый способ защиты генератора тока и предпочтительные схемы заземления электроустановок на стороне потребителя.
При монтаже линий электроснабжения общепринятыми для России считаются три системы заземления:
- TN-C – обозначает, что нулевой рабочий и защитный проводники объединены в общую шину на всем протяжении трассы.
- TN-S – нулевой рабочий и защитный проводники прокладываются раздельно.
- TN-C-S – нулевой рабочий и защитный проводники на части трассы объединены, а на остальной прокладываются раздельно.
Реже встречаются следующие системы:
- TT – нулевой рабочий и защитный проводники заземляются раздельно. Чаще всего этот способ используют в случае неудовлетворительного состояния питающей воздушной ЛЭП или для предотвращения поражения людей через токопроводящие поверхности временных сооружений.
- IT – в этой схеме нейтраль изолируется от земли или заземляется через специальное оборудование. Такой вариант чаще всего используют, если необходимо обеспечить высокий уровень защиты оборудования. Поскольку при таком варианте подключения риск искрообразования минимален.
Нормы Нормы устройства сетей заземления
Р .Н. КАРЯКИН
доктор техн. наук, профессор
Н ОРМЫ УСТРОЙСТВА СЕТЕЙ ЗАЗЕМЛЕНИЯ
МОСКВА
Энергосервис
2002
доктор технических наук, профессор К арякин Рудольф Николаевич
Нормы относятся к заземляющим устройствам электроустановок напряжением до 1 кВ и выше. Настоящее 3-е издание Норм, являясь технологическим дополнением главы 1 .
7 «Заземление и защитные меры электробезопасности» Правил устройства электроустановок ( ПУЭ), соответствует требованиям стандартов Международной Электротехнической Комиссии (МЭ К): 60364-5-54-2001: Earthing arrangements protective conductors and eq u ipotential bonding и 61024-1-2001: Protection of structures against fire , explosion and life hazards ( Lightning Protection ).
По сравнению с предыдущим 2-м изданием объем книги увеличен более чем вдвое за счет добавления новых нормативных материалов.
Книга адресована инженерам (электротехникам, электроэнергетикам, э лектромонтажникам, строителям), мастерам, бригадирам, техникам, рабочим-электромонтажникам, связанным с проектированием, монтажом, испытаниями, сертификацией, энергонадзором, ремонтом, реконструкцией и эксплуатацией электроустановок.
ПРЕДИСЛОВИЕ К 3-МУ ИЗДАНИЮ
Настоящее 3-е издание Норм устройства сетей заземления задумано как технологическое
продолжение главы 1.7 «Заземление и защитные меры электробезопасности» Правил устройства электроустановок ( ПУЭ).
Именно поэтому Нормы предполагают их практич е ское применение одновременно
с ПУЭ в едином процессе создания электроустановок и молниезащиты зданий и сооружений: проектирование — заказ оборудования и материалов — монтаж — пуско-наладочные и приемочные испытания — сертификация.
По сравнению с предыдущим 2-ым изданием объем книги увелич е н более чем вдвое за счет добавления дополнительных нормативных требований к сетям заземления и молниезащиты, учитывающих новые стандарты Международной Электротехнической Комиссии (МЭК):60364-5-54-2001: Earthing arrangements protective conductors and equipotential bonding и 61024-1-2001: Protection of structures against fire , explosion and life hazards ( Lightning Protection ).
Автор выражает благодарность инж. А. С . Е рмоленко за большую помощь при подготовке 3-ей редакции рукописи к печати.
Автор
Москва
29 октября 2001 г.
ИЗ ПРЕДИСЛОВИЯ К 1-МУ ИЗДАНИЮ
В отличие от известных инструктивных материалов по устройству сетей заземления и молниезащите предлагаемые Нормы соответствуют Основномуправилуустройстваэлектроустановок
(см. Главу 1, п. 1.1.) и комплексу стандартов ГОСТ Р 505 71 (М ЭК 364), согласно которому заземление или зануление открытых проводящих частей электроустановок следует выполнять:
1 ) при номинальном напряжении более 50 В переменного тока или более 12 0 В постоянного тока — во всех электроустановках;
Технические требования к организации заземления электроустановок
УЗ используют для защиты людей и оборудования от разрушительного действия электрического тока. Безопасность обеспечивается путем соединения защищаемых корпусов электроустановок с землей. Работы по организации заземляющих сетей регламентируются положениями ГОСТ 12.1.030-81, согласно которым защитное заземление электроустановки следует выполнять при следующих параметрах:
- при значениях номинального напряжения 380 B и более переменного тока и более 440 B и более постоянного тока – при любых значениях;
- при значениях номинального напряжения 42-380 B переменного тока 110-440 B. Для работ связанных с повышенной опасностью.
Правильно организованная система заземления электроустановок способна нейтрализовать избыточный потенциал любой мощности и защитить людей, оборудование и здания от воздействия электрического тока будь то скачки, вызванные включением или отключением силового оборудования или грозовое воздействие.
Принцип работы основан на разнице сопротивлений человеческого тела и УЗ. Избыточный потенциал отводится в направлении меньшего показателя, т. е. в сторону защитного контура.
Выбор естественных заземлителей
Согласно правилам устройства электроустановок, их корпуса должны быть подключены к искусственным или естественным заземлителям. В качестве естественных используют следующие металлические объекты:
- каркасы подземных металлоконструкций, имеющие непосредственный контакт с грунтом;
- защитные кожухи кабелей, проложенных под землей;
- металлические трубы, за исключением газо- и нефтепроводов;
- железнодорожные рельсы.
Контакт объекта с естественным заземлителем должен осуществляться минимум в двух местах. Преимущества этого метода в простоте, эффективности и сокращении затрат на организацию системы электробезопасности.
Нельзя выбирать в качестве естественных заземлителей следующие объекты:
- трубопроводы горючих и взрывчатых газов и жидкостей;
- трубы, покрытые антикоррозийной изоляцией;
- канализационные трубопроводы;
- трубы централизованного отопления.
Сопротивление стеканию тока
Заземление работает по следующему принципу: ток, стекающий в землю через место замыкания, проходит вначале на корпус электроустановки и с него через УЗ в грунт. Очевидно, что при организации сетей заземления до 1000 Вольт, важно создать цепочку, обеспечивающую стекание избыточного заряда в землю.
Значения сопротивления заземления для сетей различного назначения:
Назначение сети | Максимальное значение сопротивления, Ом |
Частные дома 220, 380 Вольт | 30 |
Промышленное оборудование | 4 |
Источник тока при напряжении 660, 380 и 220 Вольт | 2, 4, 8 |
Частный дом при подключении газопровода | 10 |
Устройства защиты линий связи | 2 (реже 4) |
Телекоммуникационное оборудование | 2 или 4 |
Чтобы получить показатели сопротивления, установленные нормативами, следует придерживаться типовых процедур:
- Увеличить площадь соприкосновения деталей заземляющего устройства с грунтом.
- Обеспечить качественный контакт между элементами устройства и соединительными шинами.
- Усилить проводимости почвы увлажнением или повышением ее солености.
Для контроля за соответствием сопротивления предписанным нормам следует проверять его уровень не реже одного раза в шесть лет.
Работа УЗ при нарушении защитной изоляции электрооборудования
Нарушение целостности защитной изоляции нередко приводит к замыканию фазы на корпус. Дальнейшее развитие событий зависит от качества системы электробезопасности. Возможны следующие варианты:
- Заземление отсутствует, устройство защитного отключения не установлено. Самая неблагоприятная ситуация. При прикосновении к корпусу ощущается сильный удар.
- Корпус подключен к системе заземления, УЗО отсутствует. Если ток утечки будет велик, сработает автомат и отключит питающую линию или цепочку. Этот вариант может привести к накоплению избыточного потенциала на корпусе, если сопротивление переходов и номинал предохранителей будут велики. Такая ситуация опасна для людей.
- Заземление отсутствует, устройство защитного отключения установлено. Ток утечки вызовет срабатывание УЗО и человек успеет ощутить только слабый удар током.
- Корпус подключен к заземлению, УЗО установлено – наиболее надежный вариант, обеспечивающий защиту людей и техники благодаря тому, что защитные устройства дополняют и отчасти дублируют друг друга. При замыкании фазы на корпус, избыточный потенциал стекает через систему заземления. Одновременно устройство защитного отключения реагирует на утечку и отключает подачу тока, исключая возможность поражения током людей. Если ток утечки значительно превышает возможности УЗО, может сработать автомат и продублировать его функцию.
Заземлители искусственные и естественные
С терминами разобрались, теперь можно рассмотреть, какие проводники можно использовать в качестве заземлителя. По заголовку раздела становится понятным, что они могут быть или естественными, или искусственными.
К естественным относятся металлические системы подземных трубопроводов (водопровод, канализация, скважины) или металлические конструкции зданий и сооружений, глубоко входящие в землю.
Что касается искусственных заземлителей, то для этого чаще всего используются металлические профили, которые вбиваются в землю на глубину от 2,5 до 3 м. Чаще всего для этих целей применяются стальные уголки с шириною полки 50 мм, арматуру или трубы. Обязательное условие – это оставить над поверхностью земли 10 см торчащего профиля. Заземлителей должно быть или четыре, или три, они устанавливаются или квадратом, или треугольником. Торчащие концы обвязываются круглой арматурой диаметром 10-16 мм или стальной полосой шириною 30 мм. Все стыки производятся только электросваркой.
Заземление цехового оборудования
Согласно правилам устройства электроустановок до 1000 Вольт, их классифицируют по виду заземляемых устройств:
- Для типового станочного оборудования.
- Для электродвигателей и сварочных аппаратов.
- Для передвижных установок и эксплуатируемых электроприборов.
Заземление типового станочного оборудования
Для заземления цехового оборудования используют контур системы уравнивания потенциалов (далее СУП).
Система уравнивания потенциалов – это элемент устройства заземления, представляющий из себя контур из проводящих элементов для подключения корпусов оборудования с целью достижения равенства потенциалов.
Важно уделить внимание следующим техническим вопросам:
- Определить расположение контура СУП в рабочей зоне.
- Рассчитать толщину шины, используемой для соединения корпуса станка с УЗ.
- Определить место наложения стационарного заземления.
- Выяснить какие устройства используются для защиты опасных частей оборудования.
Контроль этих вопросов – обязанность цехового электрика, владеющего информацией о структуре и расположении элементов системы заземления и порядке подсоединения к ней корпусов станков, в том числе предписанном конструкцией станка расположении точки подключения заземляющей шины.
Заземление электродвигателей
Согласно нормам, заземление электродвигателей также является обязательным, кроме случаев, когда оборудование устанавливается на металлический пьедестал, имеющий контакт с грунтом. В остальных случаях необходимо соединить корпус с системой заземления при помощи медной жилы. Правилами указывается, что контакт с заземлением должно быть прямым у каждого электродвигателя и последовательное подключение нескольких устройств через заземляющую цепочку недопустим, поскольку обрыв линии приводит к потере контакта сразу всех электродвигателей.
Для грамотного подключения заземления необходимо предусмотреть на подводящем силовом кабеле 380 Вольт дополнительную шину, одним концом подключенную клемме заземления в распредкоробке двигателя, а вторым – к корпусу силового шкафа. При этом важно соблюсти последовательность подключения и соединить с системой заземления вначале электрический щиток. Важно также обеспечить соответствие диаметра сечения проводников установленным нормам.
Заземление сварочных аппаратов
Правила устройства электроустановок регламентируют также порядок заземления сварочных аппаратов. Заземление корпусов оборудования в данном случае является обязательным. Кроме корпуса заземляться должна и трансформаторная вторичная обмотка через один из выводов. Другой используется для подключения держателя электродов.
Возле заземляемого вывода на корпусе расположен соответствующий знак и приспособление для фиксации шины, соединяющей его с защитным контуром. Переходное сопротивление защитного контура или устройства не должно быть выше 10 Ом.
Для повышения электропроводимости системы заземления следует увеличить контактную площадь соединений, в том числе площадь соприкосновения с землей. Подключение к ЗУ должно быть индивидуальным у каждого сварочного аппарата и не должно осуществляться через заземляющую цепочку, поскольку в случае обрыва контакт с УЗ будет потерян сразу всеми аппаратами.
Защита передвижных установок
Особое внимание стоит уделить заземлению передвижных установок. Для защиты передвижных установок используют заземлители для передвижных установок ГОСТ 16556-02016. Поскольку особенности их эксплуатации затрудняют выполнение требований по обеспечению показателей переходного сопротивления, поэтому правилами устройства электроустановок допускается повышение показателя до 25Ом. Это относится только к установкам, снабженным автономным питанием и имеющим изолированную нейтраль.
Этот вид УЗ может применяется для установок с пониженным искрообразованием, не являющихся источниками питания для иного оборудования, а также для передвижных агрегатов, имеющих собственные заземлители, не задействованные в данный момент.
Передвижные установки, оснащенные автономным питанием, требуют регулярного освидетельствования на наличие повреждений защитной оболочки, поскольку имеют изолированную нейтраль и повышенный риск образования трущихся сочленений.
Защита электроприборов
При работе с электроприборами разных типов можно ориентироваться на стандартные правила обеспечения безопасности:
- Защитить открытые токоведущие части.
- Нарастить защитную изоляцию.
- Использовать специальные приспособления для ограничения доступа к корпусам оборудования.
- Если позволяет конструкция, можно как меру использовать понижение напряжения.
Во избежание пробоев изоляции и попадания фазы на корпус электроприбора эффективными являются традиционные методы:
- Наличие системы заземления.
- Система уравнивания потенциалов.
- Усиление изоляции токоведущих частей.
- В некоторых случаях как меру безопасности при работе с электрооборудованием можно использовать ограничение доступа в помещения, представляющие потенциальную опасность за счет повышенной влажности, запыленности и т.п.
Важно учесть, если помимо заземления используются другие методы защиты людей – они не должны быть взаимоисключающими и снижать эффективность друг друга.
Задействовать естественные заземлители для обеспечения защиты возможно только при отсутствии вероятности повреждения подземных конструкций, в случае протекания по ним аварийного тока.
Место установки заземления при работе на электродвигателе
Не менее важно монтировать переносные заземлители на электродвигатель при выполнении ремонтных или профилактических работ. Они монтируются на стационарном и передвижном оборудовании.
При этом обслуживающий персонал обязан:
- Монтировать заземлители, если работы выполняются на электроприводе или оборудовании, приводимом им в движение, на котором возможно появление напряжения. Обслуживающий персонал обязан отключить его от питающей сети. Обеспечить защиту от повторного или ошибочного включения, соблюдая правила технических мероприятий. А у двухскоростных двигателей отключают и разбирают обе цепи обмоток.
- При отключении питания допускается установка переносного заземлителя в любом месте, подводящего кабеля от РУ, щита управления, сборкой. Это должно быть видимое заземление.
- Перед началом работ на оборудовании, способном вращаться за счет подсоединенных механизмов (вентиляторов, дымососов, насосов и т.д.), запорной арматуры (задвижек, шиберов и т.п.), механизмы запираются на замок. Или принимаются меры по их механической фиксации, а также затормаживаются роторы электродвигателей или рассоединяются сцепные муфты, например, конвейеров.
- Вывешиваются соответствующие таблички, а персонал обязан использовать индивидуальные меры защиты.
На фото снизу показано переносные заземлители:
При отсутствии стандартного устройства, допускается использовать провода в качестве переносного заземлителя, сечение которых не должно быть меньше питающего кабеля.
Организации производящие ремонтные работы имеют подробные инструкции по технике безопасности, в которых детально изложены этапы подготовки рабочего места и методы проведения ремонта, учитывающих специфику оборудования и производства.
Защита с помощью заземления и зануления
Для обеспечения электробезопасности людей нередко используют комбинированный метод заземления и зануления электрооборудования. Зануление обеспечивается соединением защитных корпусов с нейтралью подводящей силовой линии. Это позволяет преобразовать сетевое напряжение, попавшее на корпус установки, в однофазное короткое замыкание. И заземление и зануление выполняют защитную функцию, но разными методами.
При заземлении для обеспечения снижения избыточного потенциала используется дополнительное устройство. Для работы системы зануления достаточно соединить корпус электроустановки с нейтралью питающей сети.
При работе в потенциально опасных помещениях использование одного из описанных методов является обязательным. Ответственные сотрудники должны четко понимать отличие одного способа защиты от другого и знать каким должен быть контур заземления у каждого вида оборудования.
Бензиновые насосы АСВН, АСЦЛ
Насос бензиновый АСЦЛ20-24Г
Устройство насосное АСЦЛ-20-24Г выполнено на базе модели СЦЛ 20-24 Г. Этот […]
Насос бензиновый АСВН-80А
АСВН-80А предназначается для перекачки бензина и сходных с ним по физико-химическим […]
Бензиновый насос СВН-80А
Насос бензиновый СВН-80 – горизонтальный, вихревого типа, самовсасывающий, одноступенчатый, правоголевого […]
Бензиновые насосы предназначены для подачи бензина, керосина, дизельного топлива, спирта и других жидкостей без примесей с температурой от -40 до +50 град.С, плотностью до 1000 кг/куб.м. Бензиновые насосы применяются как передвижных, так и в стационарных установках.
Бензиновые насосы СЦЛ-00А, 1СВН-80А, 1СЦЛ 20-24Г предназначены для установки на передвижные цистерны, бензовозы, топливозаправщики. Привод насосов осуществляется от вала отбора мощности двигателя автомобиля. Насосы самовсасывающие. Бензиновые насосы 1СВН-80А и 1СЦЛ 20-24Г выпускаются левого (обозначается «Л») и правого вращения (обозначаются «П»). Детали проточной части и корпус насоса выполнены из сплавов алюминия. Бензиновый насос СЦЛ-00А — выпускается только левого вращения (см. со стороны привода). Проточная часть из сплавов алюминия, корпус насоса — из чугуна.
Еще одна группа бензиновых насосов — это насосы АСЦЛ-00А, 1АСВН-80А, 1АСЦЛ 20-24Г — горизонтальные электронасосные агрегаты, состоящие из соответствующих насосов и комплектующих электродвигателей.
Бензиновые насосы ВКС2/26АБ-2Г, ВКС-5/24АБ-2Г — это вихревые горизонтальные одноступенчатые самовсасывающие насосы с рабочим колесом из бронзы, корпусом из чугуна, уплотнение вала — двойное торцовое. Бензиновые насосы ВКС2/26АБ-2Г, ВКС-5/24АБ-2Г предназначены для перекачивания светлых нефтепродуктов: бензина, керосина, дизельного топлива.
Бензиновый насос 6НДв-Б — это горизонтальный одноступенчатый центробежный насос с рабочим колесом двустороннего входа. Мощность комплектующего электродвигателя и параметры насоса зависят от диаметра рабочего колеса (405, 380 или 360 мм). Бензиновый насос 6НДв-Б предназначен для перекачивания нефтепродуктов: сырой нефти, автомобильного и авиационного бензинов, дизельного топлива с температурой от +5 до +45 С не содержащих механических примесей.
Насосы, предназначенные для перекачивания взрывобезопасных (нейтральных) сред, не требуют комплектации дорогостоящими электродвигателями во взрывобезопасном исполнении и обозначаются (НС) — нейтральная среда.
Бензиновые насосы КМН-80-65-175, КМН-100-80-160 — это консольные, горизонтальные, моноблочные, одноступенчатые электронасосы с электродвигателем во взрывозащищенном исполнении. Насосы предназначены для перекачивания бензина, керосина, дизельного топлива и других светлых нефтепродуктов, спиртов и других жидкостей с плотностью не более 1000 кг/м3, при температуре от -30 до +60 С. Проточная часть насосов из коррозионно-стойкого алюминиевого сплава, исполнении.
Общие сведения
Самовсасывающий насос 1СВН-80А и электронасосный агрегат 1АСВН-80А предназначены для перекачивания чистых, без механических примесей жидкостей: воды, бензина, керосина, дизельного топлива, спирта и других нейтральных жидкостей вязкостью не более 2·10-5 м2/с температурой от минус 40 до 50°С и плотностью не более 1000 кг/м3. Насосы и электронасосные агрегаты могут поставляться в экспортном и экспортно-тропическом исполнении.
Структура условного обозначения
1АСВН-ХА-Х-ХХ: 1 — модификация; А — агрегат; СВН — самовсасывающий вихревой насос; Х — диаметр всасывающего и нагнетательного патрубков, мм; А — индекс модификации; Х — направление вращения электронасосного агрегата, если смотреть со стороны привода (Л — левое; П — правое); ХХ — климатическое исполнение (У, Т) и категория размещения (2; 3) по ГОСТ 15150-69.
Контроль состояния защитных устройств
Правила устройства электроустановок предписывают проводить периодическую проверку работоспособности системы заземления. Она позволяет установить соответствие параметров сопротивления стеканию тока заземляющих контуров нормативным. Проверка происходит с использованием специальных измерительных приборов, подключаемых к заземляющим устройствам по определенным схемам.
Правилами также регламентируется периодичность проведения проверки. Она зависит от класса обследования, конструкции заземляющих устройств, типа и мощности используемого оборудования. Визуальный осмотр состояния системы заземления должен проводиться каждые полгода. Проверки, сопровождаемые вскрытием грунта в местах, связанных с повышенным риском – раз в 12 лет или чаще.
Грамотный подход к организации системы заземления электроустановок, четкое понимание структуры и особенностей разных типов УЗ, а также своевременный контроль их состояния, в соответствии с действующими регламентами, обеспечит безопасность сотрудников предприятия, сохранность оборудования и зданий.
Общие требования
5.3.2. Меры по обеспечению надежности питания должны выбираться в соответствии с требованиями гл.1.2 в зависимости от категории ответственности электроприемников. Эти меры могут применяться не к отдельным электродвигателям, а к питающим их трансформаторам и преобразовательным подстанциям, распределительным устройствам и пунктам.
Резервирования линии, непосредственно питающей электродвигатель, не требуется независимо от категории надежности электроснабжения.
5.3.3. Если необходимо обеспечить непрерывность технологического процесса при выходе из строя электродвигателя, его коммутационной аппаратуры или линии, непосредственно питающей электродвигатель, резервирование следует осуществлять путем установки резервного технологического агрегата или другими способами.
5.3.4. Электродвигатели и их коммутационные аппараты должны быть выбраны и установлены таким образом и в необходимых случаях обеспечены такой системой охлаждения, чтобы температура их при работе не превышала допустимой (см. также 5.3.20).
5.3.5. Электродвигатели и аппараты должны быть установлены таким образом, чтобы они были доступны для осмотра и замены, а также по возможности для ремонта на месте установки. Если электроустановка содержит электродвигатели или аппараты массой 100 кг и более, то должны быть предусмотрены приспособления для их такелажа.
5.3.6. Вращающиеся части электродвигателей и части, соединяющие электродвигатели с механизмами (муфты, шкивы), должны иметь ограждения от случайных прикосновений.
5.3.7. Электродвигатели и их коммутационные аппараты должны быть заземлены или занулены в соответствии с требованиями гл. 1.7.
5.3.8. Исполнение электродвигателей должно соответствовать условиям окружающей среды.
Во вторых
Следует подключить фазовые выходы частотного преобразователя к контактам электрического двигателя. При этом обмотки электрического двигателя следует подключить по принципу «треугольник» или «звезда». Тип выбирается исходя из напряжения, которое вырабатывает частотник. Как правило, к каждому инвертеру приложена инструкция, в которой подробно расписано, как соединяются обмотки двигателя для подключения конкретного частотника. Схема подключения частотного преобразователя к 3-х фазному двигателю также должна быть приведена в инструкции.
Обычно на корпусах двигателей приведены оба значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются по принципу треугольника. В других случаях по принципу звезды. Схема подключения частотного преобразователя также должна быть приведена в паспорте частотника. Там же обычно приводятся и рекомендации по подключению.