Какой провод выбрать для линии заземления
Если электропроводка выполняется с нуля, то не следует для контура заземления проводить отдельный кабель – его можно включить в общий проводник, как дополнительная жила к уже имеющейся фазной и нулевой. Это означает, что любой кабель в квартире должен быть трёхжильным: «фаза», «ноль» и «земля».
Отдельный параграф в ПУЭ посвящён PE-проводникам или проводам заземления.
И пункт 1.7.121. ясно говорит, что:
- Провод «земли» может быть проложен вместе с фазным проводником.
- Допускается использовать как изолированный, так и неизолированный PE-проводник.
Третий подпункт 1.7.121
. гласит, что заземляющий проводник допускается прокладывать стационарно, как сейчас делают многие электромонтажные компании, что вполне оправдано.
Принцип действия системы заземления
Принцип действия системы заземления чрезвычайно прост. В чем состоит поражающая (разрушающая) сила электрического тока? Все начинается с того, что в одном месте при создании особых условий, накапливается очень большое количество отрицательно заряженных частиц — электронов. Но так как все в природе стремится к равновесию, то этот избыток частиц устремляется туда, где их недостаточно. Звучит не очень пугающе, но когда поток электронов мчится к земле от наэлектризованных облаков, они, эти крошечные частицы, умудряются нагревать слои атмосферы до миллиона градусов по Цельсию.
Изобретатели научились пускать этот поток в мирное русло — по электрическим проводам. Проходя через проволоку, электроны заставляют её нагреваться и иногда от перегрева она, проволока, начинает ярко светиться. Поток электронов создает и электромагнитное поле, приводящее в движение роторы мощных моторов.
Но машины иногда выходят из строя и поток электронов, прокладывают свой путь через любой предмет, проводящий электрический ток, иногда подобным проводником становится и тело человека. Таким образом, заземление зданий предназначено для предоставления заряженным частицам, электронам, образно говоря, альтернативного пути — более удобной, с меньшим сопротивлением, дороги к выходу. В результате, большая часть электронов проходит по защитному контуру заземления и уменьшает силу тока, направленного на человеческое тело.
Установка и правильный расчет заземления, молниезащиты — необходимое условие безопасности проживающих в доме.
Для чего используется заземление и как работает?
Любой электрик, даже первокурсник, расскажет Вам, что заземлением называют специально созданное соединение рабочего электрического оборудования (точки или узла сети) с некоторым заземляющим устройством.
Шина заземления.
Последним могут выступать как специально смонтированные конструкции и приборы, так и грунт. И то, и другое одинаково эффективно, но используется в различных случаях.
Заземляющее устройство и рабочие кабели выбираются в зависимости от назначения заземления. Основных видов всего пара:
- рабочее (или функциональное),
- защитное.
Функциональным называют процесс в том случае, когда он необходим непосредственно для правильной и исправной работы оборудования.
Защитным, в свою очередь, является заземление, приводящее к безопасной для человека работе приборов. Непосредственно используется этот вид не постоянно (в отличии от предыдущего), а только в ситуациях поломок, выхода из строя или при попадании в прибор молнии.
Заметим, что нередко защитное заземление используется для уменьшения количества электромагнитных помех.
В квартирах и домах проводится именно защитное заземление. Для бытовых целей обычно используется недорогой заземляющий проводник — одножильный кабель или часть многожильного. Основной составляющей провода всегда остается медь, а вот сечение варьируется. Основной вопрос, который волнует домашних мастеров и неопытных электриков — провод для заземления какого сечения должен быть? Попробуем ответить.
1.7.121
В качестве PE
-проводников в электроустановках напряжениемдо 1 кВ могут использоваться:
1) специально предусмотренные проводники:
жилы многожильных кабелей;
изолированные или неизолированные провода в общей оболочкес фазными проводами;
стационарно проложенные изолированные или неизолированныепроводники;
2) открытые проводящие части электроустановок:
алюминиевые оболочки кабелей;
стальные трубы электропроводок;
металлические оболочки и опорные конструкции шинопроводов икомплектных устройств заводского изготовления.
Металлические короба и лотки электропроводок можноиспользовать в качестве защитных проводников при условии, что конструкциейкоробов и лотков предусмотрено такое использование, о чем имеется указание вдокументации изготовителя, а их расположение исключает возможностьмеханического повреждения;
3) некоторые сторонние проводящие части:
металлические строительные конструкции зданий и сооружений(фермы, колонны и т.п.);
арматура железобетонных строительных конструкций зданий приусловии выполнения требований 1.7.122;
металлические конструкции производственного назначения(подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов,обрамления каналов и т.п.).
Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с глухозаземленной нейтралью
1.7.100. В электроустановках с глухозаземленной нейтралью нейтраль генератора или трансформатора трехфазного переменного тока, средняя точка источника постоянного тока, один из выводов источника однофазного тока должны быть присоединены к заземлителю при помощи заземляющего проводника.
Искусственный заземлитель, предназначенный для заземления нейтрали, как правило, должен быть расположен вблизи генератора или трансформатора. Для внутрицеховых подстанций допускается располагать заземлитель около стены здания.
Если фундамент здания, в котором размещается подстанция, используется в качестве естественных заземлителей, нейтраль трансформатора следует заземлять путем присоединения не менее чем к двум металлическим колоннам или к закладным деталям, приваренным к арматуре не менее двух железобетонных фундаментов.
При расположении встроенных подстанций на разных этажах многоэтажного здания заземление нейтрали трансформаторов таких подстанций должно быть выполнено при помощи специально проложенного заземляющего проводника. В этом случае заземляющий проводник должен быть дополнительно присоединен к колонне здания, ближайшей к трансформатору, а его сопротивление учтено при определении сопротивления растеканию заземляющего устройства, к которому присоединена нейтраль трансформатора.
Во всех случаях должны быть приняты меры по обеспечению непрерывности цепи заземления и защите заземляющего проводника от механических повреждений.
Если в PEN-проводнике, соединяющем нейтраль трансформатора или генератора с шиной PEN распределительного устройства напряжением до 1 кВ, установлен трансформатор тока, то заземляющий проводник должен быть присоединен не к нейтрали трансформатора или генератора непосредственно, а к PEN—проводнику, по возможности сразу за трансформатором тока. В таком случае разделение PEN-проводника на РЕ- и N-проводники в системе TN—S должно быть выполнено также за трансформатором тока. Трансформатор тока следует размещать как можно ближе к выводу нейтрали генератора или трансформатора.
1.7.101. Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN— или РЕ-проводника ВЛ напряжением до 1 кВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.
При удельном сопротивлении земли r >100 Ом×м допускается увеличивать указанные нормы в 0,01r раз, но не более десятикратного.
1.7.102. На концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN-проводника. При этом в первую очередь следует использовать естественные заземлители, например, подземные части опор, а также заземляющие устройства, предназначенные для грозовых перенапряжений (см. гл. 2.4).
Указанные повторные заземления выполняются, если более частые заземления по условиям защиты от грозовых перенапряжений не требуются.
Повторные заземления PEN-проводника в сетях постоянного тока должны быть выполнены при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами.
Заземляющие проводники для повторных заземлений PEN—проводника должны иметь размеры не менее приведенных в табл. 1.7.4.
Таблица 1.7.4
Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле
Материал | Профиль сечения | Диаметр, мм | Площадь поперечного сечения, мм | Толщина стенки, мм |
Сталь черная | Круглый: | |||
для вертикальных заземлителей | 16 | — | — | |
для горизонтальных заземлителей | 10 | — | — | |
Прямоугольный | — | 100 | 4 | |
Угловой | — | 100 | 4 | |
Трубный | 32 | — | 3,5 | |
Сталь оцинкованная | Круглый: | |||
для вертикальных заземлителей | 12 | — | — | |
для горизонтальных заземлителей | 10 | — | — | |
Прямоугольный | — | 75 | 3 | |
Трубный | 25 | — | 2 | |
Медь | Круглый | 12 | — | — |
Прямоугольный | — | 50 | 2 | |
Трубный | 20 | — | 2 | |
Канат многопроволочный | 1,8* | 35 | — |
* Диаметр каждой проволоки.
1.7.103. Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой BЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.
При удельном сопротивлении земли r >100 Ом×м допускается увеличивать указанные нормы в 0,01 r раз, но не более десятикратного.
Заземляющие устройства электроустановок напряжением до 1 кВ в сетях с изолированной нейтралью
1.7.104. Сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей, в системе IT должно соответствовать условию:
R ≤ Uпр/I,
где R — сопротивление заземляющего устройства, Ом;
Uпр — напряжение прикосновения, значение которого принимается равным 50 В (см. также 1.7.53);
I — полный ток замыкания на землю, А.
Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность генераторов или трансформаторов не превышает 100 кВ×А, в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.
Заземляющие устройства в районах с большим удельным сопротивлением земли
1.7.105. Заземляющие устройства электроустановок напряжением выше 1 кВ с эффективно заземленной нейтралью в районах с большим удельным сопротивлением земли, в том числе в районах многолетней мерзлоты, рекомендуется выполнять с соблюдением требований, предъявляемых к напряжению прикосновения (см. 1.7.91).
В скальных структурах допускается прокладывать горизонтальные заземлители на меньшей глубине, чем этого требуют 1.7.91-1.7.93, но не менее чем 0,15 м. Кроме того, допускается не выполнять требуемые 1.7.90 вертикальные заземлители у входов и у въездов.
1.7.106. При сооружении искусственных заземлителей в районах с большим удельным сопротивлением земли рекомендуются следующие мероприятия:
1) устройство вертикальных заземлителей увеличенной длины, если с глубиной удельное сопротивление земли снижается, а естественные углубленные заземлители (например, скважины с металлическими обсадными трубами) отсутствуют;
2) устройство выносных заземлителей, если вблизи (до 2 км) от электроустановки есть места с меньшим удельным сопротивлением земли;
3) укладка в траншеи вокруг горизонтальных заземлителей в скальных структурах влажного глинистого грунта с последующей трамбовкой и засыпкой щебнем до верха траншеи;
4) применение искусственной обработки грунта с целью снижения его удельного сопротивления, если другие способы не могут быть применены или не дают необходимого эффекта.
1.7.107. В районах многолетней мерзлоты, кроме рекомендаций, приведенных в 1.7.106, следует:
1) помещать заземлители в непромерзающие водоемы и талые зоны;
2) использовать обсадные трубы скважин;
3) в дополнение к углубленным заземлителям применять протяженные заземлители на глубине около 0,5 м, предназначенные для работы в летнее время при оттаивании поверхностного слоя земли;
4) создавать искусственные талые зоны.
1.7.108. В электроустановках напряжением выше 1 кВ, а также до 1 кВ с изолированной нейтралью для земли с удельным сопротивлением более 500 Ом×м, если мероприятия, предусмотренные 1.7.105-1.7.107, не позволяют получить приемлемые по экономическим соображениям заземлители, допускается повысить требуемые настоящей главой значения сопротивлений заземляющих устройств в 0,002r раз, где r — эквивалентное удельное сопротивление земли, Ом×м. При этом увеличение требуемых настоящей главой сопротивлений заземляющих устройств должно быть не более десятикратного.
Заземлители
1.7.109. В качестве естественных заземлителей могут быть использованы:
1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;
2) металлические трубы водопровода, проложенные в земле;
3) обсадные трубы буровых скважин;
4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т.п.;
5) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;
6) другие находящиеся в земле металлические конструкции и сооружения;
7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.
1.7.110. Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с 1.7.82.
Не следует использовать в качестве заземлителей железобетонные конструкции зданий и сооружений с предварительно напряженной арматурой, однако это ограничение не распространяется на опоры ВЛ и опорные конструкции ОРУ.
Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций, приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность использования фундаментов в сильноагрессивных средах должны быть определены расчетом.
1.7.111. Искусственные заземлители могут быть из черной или оцинкованной стали или медными.
Искусственные заземлители не должны иметь окраски.
Материал и наименьшие размеры заземлителей должны соответствовать приведенным в табл. 1.7.4.
1.7.112. Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ следует выбирать по условию термической стойкости при допустимой температуре нагрева 400 °С (кратковременный нагрев, соответствующий времени действия защиты и отключения выключателя).
В случае опасности коррозии заземляющих устройств следует выполнить одно из следующих мероприятий:
увеличить сечения заземлителей и заземляющих проводников с учетом расчетного срока их службы;
применить заземлители и заземляющие проводники с гальваническим покрытием или медные.
При этом следует учитывать возможное увеличение сопротивления заземляющих устройств, обусловленное коррозией.
Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора.
Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п.
Заземляющие проводники
1.7.113. Сечения заземляющих проводников в электроустановках напряжением до 1 кВ должны соответствовать требованиям 1.7.126 к защитным проводникам.
Наименьшие сечения заземляющих проводников, проложенных в земле, должны соответствовать приведенным в табл. 1.7.4.
Прокладка в земле алюминиевых неизолированных проводников не допускается.
1.7.116. Для выполнения измерений сопротивления заземляющего устройства в удобном месте должна быть предусмотрена возможность отсоединения заземляющего проводника. В электроустановках напряжением до 1 кВ таким местом, как правило, является главная заземляющая шина. Отсоединение заземляющего проводника должно быть возможно только при помощи инструмента.
1.7.117. Заземляющий проводник, присоединяющий заземлитель рабочего (функционального) заземления к главной заземляющей шине в электроустановках напряжением до 1 кВ, должен иметь сечение не менее: медный — 10 мм2, алюминиевый — 16 мм2, стальной — 75 мм2.
1.7.118. У мест ввода заземляющих проводников в здания должен быть предусмотрен опознавательный знак
1.7.126. Наименьшие площади поперечного сечения защитных проводников должны соответствовать табл. 1.7.5.
Площади сечений приведены для случая, когда защитные проводники изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.
Таблица 1.7.5
Наименьшие сечения защитных проводников
Сечение фазных проводников, мм2 | Наименьшее сечение защитных проводников, мм |
S ≤ 16 | S |
16 <� S ≤ 35 | 16 |
S > 35 | S/2 |
Подбираем кабель для заземления.
Прежде, чем выбирать провод заземления, необходимо определиться с несколькими другими основополагающими вопросами.
Проводить заземление самостоятельно приходится владельцам частных домов или загородных коттеджей, а также старых квартир, постройки ранее 1998 года. Современные дома уже обладают готовой системой заземления, в отличии от всех старых. Для правильного подбора сечения, необходимо выяснить, какая система существует в доме.
Основных, согласно Правилам Устройства Электроустановок (далее ПУЭ), всего четыре:
- TN-S — осуществлено заземление с помощью отдельного провода и нейтрали, в системе переменного тока;
- TN-C — кабели «ноль» и «земля» объединяются в один провод, нейтраль отдельно, наиболее распространено в домах прошлого века;
- TT — прямое защитное заземление, установленное на электрооборудование;
- IT — работа с корпусом устройства через сопротивление или полной изоляцией всех токопроводящих кабелей.
Непосредственно на схеме заземления Вы должны обнаружить одну из маркировок:
- PE — «заземление»,
- PEN — «ноль» и «земля» в одном кабеле.
Следующим немаловажным фактором выбора, который поможет определиться с правильным сечением проводника, является тип заземления. Стационарное или переносное — в зависимости от предназначения. Для обычного бытового заземления достаточного и стационарного типа, который в свою очередь, допускает как многопролочные, так и однопроволочные многожильные кабели.
Провод должен быть выполнен в желто-зелёном цвете изоляции, согласно ПУЭ.
Когда определились с типом, материалом кабеля и видом системы, переходим к основному шагу — подбору сечения кабеля.
Требования к заземляющим, защитным проводникам и проводникам системы
Технологические характеристики заземляющих проводников должны соответствовать месту их установки, способу соединения, материалов, из которых изготовлены провода. Кроме специальных требований, к такой продукции применяются еще и общие правила. Только тогда любой из них снизит значение электротока до 0.
Подключение защитных систем проводится к общей точке для любого электрооборудования – к глухо заземленной нейтрали по 5 основным схемам. Нулевой потенциал при подключении заземлителя создается с помощью нейтрального провода, который принято обозначать буквенным символом N. У защитного нулевого кабеля имеется собственное обозначение — РЕ.
После уравнивания потенциалов напряжение в проводке будет с таким же значением, как и при коротком замыкании. Поэтому для сечения заземляющих проводников подбирается такой же диаметр, как у кабеля фазы. Маркировка используемых проводов может выбираться с учетом значений, принятых ГОСТом из готовых таблиц, размещенных в приложениях ПЭУ. Все используемые кабели могут быть только качественного изготовления и с нужными технологическими характеристиками.
Для проведения отдельных расчетов сечения заземляющего проводника используется формула, в которой указаны показатели короткого замыкания, вид используемого провода и технология его укладки. При расчете параметров создаваемой системы защиты, следует учитывать, что идущее по ней сопротивление не может превышать 4 Ом. Более безопасное подключение создается при использовании винтового способа соединения. Нулевой кабель должен быть окрашен в синий цвет, а проводка заземления – в желтый.
Принцип построения и назначение защитного заземления
Если говорить простыми словами, защитное заземление формируется следующим образом. Заземляющий провод подключается к нетоковедущей металлической части.
На следующем этапе «земля», подключенная к оборудованию, объединяется, а далее идет отдельным проводом или шинкой к заземляющему устройству.
В случае пробоя напряжения на металлический корпус и прикосновения к нему человека потенциал идет через землю, а не через тело. Благодаря низкому сопротивлению, быстрее срабатывает защит и УЗО.
Для сравнения R заземляющего контура всего 4 Ом или меньше, а человека — более 1000 Ом. По закону Ома мы знаем, что ток всегда идет по пути наименьшего сопротивления.
Таким образом, защитное заземление предназначено для решения таких задач:
- уменьшение разницы потенциалов между заземляемым устройством и иными предметами и защита жизни человека;
- отвод тока в землю и повышение его значений для срабатывания защитных устройств (УЗО, автоматов).
Следовательно, при прокладывании проводника для заземления важно позаботиться о наличии защитных устройств. Последние должны быстро реагировать на утечку или высокие токи, отсекая поврежденный участок. Чем быстрее это произойдет, тем лучше.
Для чего нужно заземление зданий
Наши далекие предки сталкивались только с проявлениями атмосферного электричества. Но уже тогда люди знали, насколько опасными могут быть разряды молнии и называли их «гневом богов». Раскопки археологов показали, что уже в те далекие времена люди понимали некоторые принципы действия атмосферного электричества и пытались создавать примитивные системы защиты. Эти находки представляли собой длинные медные прутья, возвышающиеся над зданиями, противоположным концом погруженные в грунт.
Однако с развитием человеческого общества, технологий, электричество прочно вошло в наш быт. И тут же остро встал вопрос о защите человека от поражающих факторов электрического тока, но на этот раз не атмосферного, а «домашнего», сгенерированного машинами, построенными самим же человеком. Решение оказалось лежащим на поверхности.
Действительно, заземление зданий — практически точная копия конструкции громоотвода. Из опасной зоны ток отводится в землю с помощью фидера — металлического стержня, проволоки, кабеля.
С помощью заземления защищают электрические агрегаты, домашние сети, бытовую и промышленную технику. В случаях, когда на объектах электроснабжения случается пожар, насосы пожарных автомобилей и даже ручные стволы (брандспойты), которыми пожарные бойцы тушат пожар, должны быть заземлены с помощью специальных устройств.
Расчёт сечения заземляющего проводника
Многие мастера-электрики сильно не вникают в суть вопроса и всегда приобретают кабель с жилами одинакового сечения. В итоге провод «земли» не отличается от фазного или рабочего «нуля». Но ПУЭ предусмотрены наименьшие размеры проводников заземления и занесены в виде формул в отдельную таблицу.
Рисунок 2: Провода заземления с уже готовой обжатой клеммой
Основные формулы определения наименьшего сечения PE-проводника:
- При фазном сечении S ≤ 16 мм2, сечение PE-проводника: S.
- При фазном сечении 16 < S ≤ 35, сечение PE-проводника: 16.
- При фазном сечении S > 35, сечение PE-проводника: S/2.
Следует сразу уточнить, что такие расчёты выполняют только на серьёзных промышленных предприятиях, а во время прокладки электропроводки в ломах или квартирах ими очень часто пренебрегают.
Цвет провода заземления и особенности подключения
Во избежание путаницы важно понимать, какие обозначения необходимо предусмотреть для таких проводов.
На сегодня применяются следующие виды маркировок:
- PE — 0-ые защитные провода и шинки, имеющие расцветку в виде переплетающегося желто зеленого оттенков.
- N — 0-ые провода, обозначаемые голубым цветом (нейтраль).
- PEN — объединение нуля и заземления. Главная часть голубая, на краях совмещение желто-зеленого цвета.
В нашем случае применяется обозначение с соответствующим цветовым исполнением (желтый и зеленый). Таким же образом он обозначается и в трехжильном проводе.
Если под рукой нет провода с необходимым цветом, можно использовать обычную изоленту желтого и зеленого цвета. Все, что требуется — сделать отметки на концах провода.
Заземление (PE) выводится и подключается к заземляющей шине, корпусу или металлической дверце щитка. Нулевой провод (N) соединяется с шинкой нейтрали.
Подробнее про заземление и зануление https://elektrikexpert.ru/zazemlenie-i-zanulenie.html, в чем разница между ними.
Основные марки проводов для заземления.
Кабель для заземления.
Кабель NYM
Жилы, а точнее их оболочка, окрашены в соответствии со стандартами ПУЭ, внутри медные жилы. Имеет дополнительную промежуточную оболочку, что повышает уровень безопасности даже при длительном использовании кабеля. Прост в обращении и установке, подходит для напряжения до 660 Вольт с частотой в 50 герц.
Кабель ВВг
Жилы с медной проволокой первого и второго класса скрутки имеют характерную окраску, при этом «ноль» — голубой, а «земля» — желто-зеленая. Изоляция и внешняя оболочка выполняются из поливинилхлорида, благодаря чему сам кабель препятствует горению.
Провод ПВ-6
Медный, многопроволочный в оболочке из прозрачного ПВХ. Токопроводящая жила отлично видна под такой оболочкой, благодаря чему следить за целостностью всей длины провода не составляет труда. Очень гибкий, без проблем может быть подвержен температурам в диапазоне от -40 до +55 градусов Цельсия.
Провод ESUY
Стандартное применение — при защите от короткого замыкания системы. Выдерживает огромные нагрузки, встречается в работе на железных дорогах, в распредблоках. Стойкий к температурам и сгибаниям, имеет защиту от физического и химического воздействия.
Провод ПВ-3
Множество тонких мягких нитей медной проволоки сплетены под единственным слоем поливиниллхлорида. Выпуск возможен в одиннадцати цветовых решениях, но для заземления традиционно используется желто-зеленый вариант.
Особенность оболочки — повышенная ломкость в условиях неправильного производства или хранения. Обратите внимание на свежий срез: не должно присутствовать никаких разрывов. В противном случае кабель использовать не рекомендуется.
Как все это использовать? Для заземления обычной среднестатистической квартиры одинаково подойдёт как многожильный ВВГ, так и однопроволочный NYM. Иногда, в целях экономии используется провод ППВ, без характерной окраски. Это чревато проблемами при ремонте или замене проводки в квартире. Нередко для квартир используются немецкие ESUY, гибкие одножильные провода.
Как видите, понять, какой провод нужен для заземления — задача достаточно сложная, но выполнимая. Достаточно внимательно разобраться в вопросе и ознакомиться с несколькими положениями из правил устройства электроустановок.
Как выполняется монтаж контура заземления дома?
Эксперты рекомендуют выполнять эти работы в теплые месяцы. Причина:
- простота проведения работ;
- отсутствие проблем при измерении сопротивления контура.
Под землей располагают конструкции из металла. В отношении частных домов оптимально подходит контур в виде треугольника. Заложенный в грунт заземлитель соответствующей конфигурации:
- имеет внушительную площадь;
- в состоянии обеспечить небольшое сопротивление (электрическое) контура.
Монтаж заземлителей начинают с выбора подходящего места. Глубина залегания конструкции выбирается ниже отметки промерзания грунта — 0.7-1 м. Траншея в сторону силового щита копается от одного из углов треугольника.
Молниезащита частных домов подразумевает вбивание в вершины треугольника электродов (играют роль заземлителей). Оптимально для данных целей подходит уголок стали со стороной шириной 50 мм. Стержни вбивают в землю. При плотном грунте возникает необходимость бурения скважин. Электроды должны выступать над уровнем земли.
Молниезащита зданийобустраивается в результате формирования контура. На практике для этих целей используется полоса стали 40*5 мм. Ее необходимо приварить к стержням. Полосу от металлического треугольника отводят к силовому шкафу. Там ее крепят к кабелю посредством болта. Данный крепеж следует приварить к полосе.
Заземление зданий требует проверки контура. Для этих целей задействуется диагностический прибор — омметр. Обязательное требование: значение показателя заземления менее регламентируемого. При необходимости в грунт вбиваются дополнительные металлические стержни.
Финальный этап проведения работ — засыпка траншеи землей. Грунт должен быть однородным (наличие в нем щебня и строительного мусора не допускается). При эксплуатации контура в засушливую погоду грунт (в месте его заложения) поливают водой. Цель: снижение сопротивления конструкции.
Маркировка
Для лучшего понимания поднимем вопрос маркировки изоляции применяемых проводников.
В названии провода могут использоваться следующие обозначения:
- А — алюминиевый сердечник (при отсутствии буквы — медный);
- АС — наличие оплетки из свинца;
- АА — многожильный провод, имеющий алюминиевый сердечник и оплетку из этого же материала;
- Б — защита от коррозии, выполнена из двуслойной стали;
- Г — без оболочки;
- Бн — защита от влаги и стойкость к огню;
- НП — негорючий материал;
- Р — резиновая оболочка;
- В — оболочка из поливинилхлорида;
- К — контрольный кабель и т. д.
На указанную выше маркировку необходимо обращать внимание при выборе провода для заземления в привязке с его сечением (об этом упоминалось выше).
Типы
Заземление зданий и электроустановок различного напряжения сооружают по одному из трех типов: кольцевому, глубинному или фундаментному. Выбор вида контура и материалов для заземлителя для конкретного строения производится с учётом его размеров и назначения, возможностей и ограничений монтажа, степени насыщенности электрооборудованием и ряда других причин. При необходимости можно соединять между собой несколько систем заземления (с учетом риска возникновения коррозии). Любое заземление зданий необходимо соединить с шиной уравнивания потенциалов.
Фото проводов для заземления
Вам понравилась статья? Поделитесь