Щуп собран на отрезке фольгированного стеклотестолита и помещен в металлическую трубку, выполняющую роль экрана. Чтобы не вызывать аварийных ситуаций, когда и если щуп падает на включенное испытуемое устройство, трубка покрыта термоусадкой. Без покрытия заготовка выглядит вот так:
Щуп в разобранном виде:
Конструкции могут быть разными. Просто нужно учитывать некоторые вещи:
- Если выполняете щуп без делителя, т.е. он не содержит в себе больших сопротивлений и переключателей, т.е. элементов подверженных электромагнитным наводкам, то целесообразно экранированный провод щупа протягивать до самой иглы. В этом случае дополнительная экранировка элементов вам не понадобится и щуп можно выполнять из любого диэлектрика. Например использовать один из щупов для тестера.
- Если в щупе выполнен делитель, то когда вы берете его в руки, вы неизбежно будете увеличивать наводки и помехи. Т.е. потребуется экранировка элементов делителя.
В моем случае соединение трубки с экраном (точнее с обратной стороной стеклотестолита) выполнено припаиванием пружинки на тектолит, которая и создает контакт между экраном и платой щупа.
В качестве иглы использовал «Папу» от разъема типа ШР. Но ее можно выполнить и из любого другого подходящего стержня. Разъем от ШР удобен тем, что его «Маму» можно впаять в зажим, который можно будет при необходимости надевать на щуп.
Подбор провода
Отдельного упоминания заслуживает подбор провода. Правильный провод выглядит так:
Миниджек 3,5 мм расположен рядом для масштаба
Правильный провод представляет из себя более-менее обычный экранированный провод, с одним существенным отличием – центральная жила у него одна. Очень тонкая и выполнена из стальной проволоки, а то и проволоки с высоким удельным сопротивлением. Почему именно так поясню немного позже.
Такой провод не сильно распространен и найти его достаточно непросто. В принципе, если вы не работаете с высокими частотами порядка десятка мегагерц, особой разницы, использовав обычный экранированный провод, вы можете и не ощутить. Встречал мнение, что на частотах ниже 3-5 МГц выбор провода не критичен. Ни подтвердить, ни опровергнуть не могу – нет практики на частотах выше 1 МГц. В каких случаях это может сказываться тоже скажу позже.
Самодельные осциллографы нечасто имеют полосу пропускания в несколько мегагерц, поэтому используйте тот провод, который найдете. Просто стремитесь подобрать такой, у которого центральные жилы потоньше и их поменьше. Встречал мнение, что центральная жила должна быть потолще, но это явно из серии «вредных советов». Малое сопротивление проводу осциллографа без надобности. Там токи в наноамперах.
И важно понимать, чем ниже собственная емкость изготовленного щупа, тем лучше. Это связано с тем, что когда вы подключаете щуп к исследуемому устройству, вы тем самым подключаете дополнительную емкость.
Если подключаете напрямую на выход логического элемента либо в ИБП, т.е. к достаточно мощному источнику сигнала, имеющему достаточно малое собственное сопротивление, то все будет отображаться нормально. Но если в цепи есть значительные сопротивления, то емкость щупа будет сильно искажать форму сигнала, т.к. будет заряжаться через это сопротивление. А это означает, что вы уже не будете уверены в достоверности осциллограммы. Т.е. чем ниже собственная емкость щупа, тем шире диапазон возможных применений вашего осциллографа.
Осциллограф начинающего DSO138 — инструкция и модернизация
Любой новичок, занимающийся радиоэлектроникой рано или поздно сталкивается с необходимостью узнать форму сигнала и частоту. Для этого существуют осциллографы, в простонародье «ослы». Поэтому сегодня предлагаю рассмотреть недорогой Китайский вариант — dso138, для новичка в самый раз.
Ссылка
Изначально эта модель разрабатывалась как конструктор для пайки своими руками, но Китайские друзья смекнули, что в спаянном виде спрос на осциллограф выше. Мы будем рассматривать уже готовую, рабочую плату.
Несмотря на то, что продавцы заявляют максимальную, исследуемую частоту 200 кГц., на такой диапазон вряд-ли стоит рассчитывать. Ну разве что прикинуть приблизительно частоту, без реальной картины формы сигнала.
Если же быть реалистом, то следует рассчитывать на относительно сносную картинку на частоте 50 кГц, выше — будут сильные искажения. Для наладки различных импульсных источников питания этого будет достаточно.
Важный момент — этот осциллограф можно и даже нужно сделать портативным. Карманный прибор, даже с такими не высокими характеристиками может оказаться весьма полезным помощником при ремонте низкочастотных узлов.
Итак, при покупке присылается коробка с платой и дисплеем, щуп в виде двух крокодилов и «куцая» инструкция на английском. В использовании различных функций приходится разбираться методом «высоконаучного тыка» и минимальной информацией из интернета.
Организация питания
Для питания требуется источник 9 В, как утверждают изготовители, питающее напряжение может быть в пределах 8-12 вольт. Потребляемый ток не указан, забегая вперёд — он составляет чуть более 100 мА.
Очень практичным и универсальным решением считаю питать плату от портативного аккумулятора (power bank) — сейчас они есть практически у каждого. К тому же, адаптировав осциллограф для 5 В аккумулятора, плату можно будет запитать и от телефонной зарядки.
Для повышения напряжения с 5 до 9 вольт можно использовать DC-DC преобразователь, например MT3608
— стоит копейки в радиомагазине или у тех же Китайцев. Для подключения к плате я использовал разъём компьютерного вентилятора — подойдут те, которые с двумя проводами, например со старой видеокарты.
То-ли из-за входного конденсатора, то-ли по иным причинам, но у платы большие стартовые токи и при включении всей схемы срабатывает внутренняя защита аккумулятора (выход 2 А). Проблема легко решается добавлением резистора 0,5 Ом в разрыв входного питания DC-преобразователя.
Перед подключением платы осциллографа необходимо выставить на преобразователе напряжение 9-10 вольт, делается это путем вращения подстроечного резистора.
Перед первым включением рекомендую впаять перемычку или штырёк для образцового сигнала, место под перемычку находится рядом с разъёмами питания. Внутренний генератор выдаёт прямоугольные импульсы частотой 1 кГц и амплитудой 3,3 В. Для проверки нужно коснуться красным крокодилом до перемычки, черный крокодил никуда цеплять не нужно.
Теперь можно включать всю схему и приступать к освоению несложной инструкции.
Инструкция по использованию
Назначение кнопок и переключателей
. Плата имеет 3 переключателя: коммутация входа, чувствительность и её множитель. Вход переключается на 3 положения: ❶ «GND» — вход замкнут на землю и экран отображает только собственные помехи, можно судить об отклонении от нуля заводских настроек.
В идеале линия должна быть на нуле, однако имеются отклонения при разной чувствительности. ❷ «AC» — Вход реагирует только на переменные и пульсирующие токи, при подаче на щуп постоянного напряжения, луч лишь немного дергается. Измерять постоянное напряжение не получится.
❸»DC» — Вход подключен без разделительного конденсатора, поэтому реагирует как на переменное напряжение, так и на постоянное. Можно использовать как милливольтметр.
Чувствительность 1В; 0,1В; 10мВ; в небольших пределах регулируется множителями X1; X2; X5; Произведение чувствительности и множителя — одна клетка на экране по вертикали. Эта величина отображается на экране.
Справа от экрана расположено 4 кнопки (1 снизу не в счёт — это перезагрузка): пауза/пуск — позволяет остановить меняющуюся картинку и рассмотреть более подробно, выбор параметра — позволяет выбрать один из нескольких параметров и кнопками +- подкорректировать.
Выбираемые параметры (по хронологии нажатий): ❶ Длительность одной клетки по горизонтали, по факту настраивается под нужную частоту; ❷ Режим воспроизведения, не заметил особой разницы между тремя режимами, только незначительные нюансы, режим «AUTO» самый удобный; ❸ Срабатывание триггера, по фронту или спаду сигнала.
Я толком не разобрался в этой функции, это связано с наладкой устройств с цифровым, логическим сигналом; ❹ Курсор триггера, можно выставить нужную величину напряжения для срабатывания. При достижении кривой сигнала выставленного значения срабатывает светодиод под экраном.
Кроме этого, когда курсор в пределах действующего сигнала, график более удобно рассматривать, он не плывёт. Для аналоговых измерений лучше выставлять его на нуль; ❺ Прокрутка картинки влево/вправо.
Функция полезна при паузе — можно рассмотреть кривую сигнала большей длительности, чем позволяет экран; ❻ Курсор нуля, собственно его можно перемещать как вверх, так и вниз. Таким образом можно рассматривать положительные или отрицательные полуволны более подробно;
Что касается параметров измеряемого сигнала в рабочей области экрана — разберёмся, что они означают: Freq
— собственно частота сигнала;
Cycl
— время периода;
Pw
— время полупериода;
Duty
— коэффициент заполнения (западный аналог скважности, 50% равен скважности 2);
Vmax
— Максимальное амплитудное значение сигнала;
Vmin
— Минимальное амплитудное значение (максимальное отрицательное);
Vavr
— Среднее напряжение;
Vpp
— Значение от Vmin до Vmax, если размах будет от -5 В до +5 В, то это значение получается 10 В;
Vrms
— Среднеквадратическое напряжение;
Выставление нуля
. При первом включении сильно бросается в глаза, что нулевой курсор не совпадает с линией сигнала. Несовпадение это проявляется по-разному при разном положении чувствительности и множителей.
Чтобы подкорректировать луч, необходимо кнопкой «Выбор параметра» выбрать курсор нуля, а затем зажать на 2 секунды кнопку «Пауза/пуск». Аналогичным образом курсор триггера выставляется на тот же уровень, что и нуль.
Если не нужны значения сигнала на экране
— кнопкой «Выбор параметра» выбирается длительность развертки и на 2 секунды нажимается «Пауза/пуск». Идентично надписи возвращаются на экран.
Самое главное: не стоит забывать, что максимальное входное напряжение на щупах осциллографа не должно превышать 50 В. Для измерений более высоких напряжений нужно сооружать дополнительный делитель или брать другой щуп со встроенным делителем.
Мы обязательно рассмотрим самодельный делитель и корпус к описываемой плате, но позднее. Сейчас же немного затронем практическую часть, а именно — какую пользу может принести эта «игрушка»?
Практическое применение
Этим прибором можно прекрасно пользоваться как вольтметром и милливольтметром как постоянного, так и переменного напряжения. Причём мы уже не ограничены так сильно частотой или формой сигнала, как при использовании мультиметра.
При измерениях следует уделять больше внимание не амплитудным значениям, а среднеквадратичным Vrms.
Именно среднеквадратичное значение учитывается при измерении переменного напряжения — в сети амплитудные значения достигают более 310 В, однако действующее значение именно 220 (среднеквадратическое).
Так как мы можем с достаточно высокой точностью измерять напряжение, то соответственно можем более точно измерить любые токи на шунте, для этого нужно всего лишь научиться использовать закон Ома.
Осциллографом можно прекрасно смотреть сигналы звукового тракта — для таких целей это никакая не игрушка. При сносном качестве можно смотреть процессы в импульсных источниках питания. Эта плата приобреталась мной именно для этих целей.
Как пример: осциллограф помог мне наладить блок питания шуруповерта (описание есть в этом разделе) с мощными IGBT-транзисторами.
Я никак не мог понять, почему блок не хочет запускаться, перемотал коммутирующий трансформатор с разными данными — никак.
Когда оценил сигналы на затворах, всё стало ясно — не хватает открывающего напряжения, нужно добавить витков в затворных обмотках. Вот этот затухающий сигнал, достаточно чёткий, частота 44 кГц:
На этом публикацию заканчиваю. Если данная тема вообще будет интересна посетителям сайта, то обязательно её расширю и дополню. Ставьте оценки и проявляйте активность.
Оцените публикацию:
4.6 (103 )
Смотрите также другие статьи
Поделиться: Facebook
- Предыдущая записьКак сделать ручной лобзик своими руками
- Следующая записьМодернизация газового котла своими руками
Нет комментариев
Принципиальные схемы щупов
Собственно схема щупа, которую я применил, предельно проста:
Это делитель на 10 для осциллографа с входным сопротивлением 1 мегом. Сопротивление лучше составить из нескольких, соединенных последовательно. Переключатель просто замыкает напрямую добавочное сопротивление. А подстроечный конденсатор позволяет согласовать щуп с конкретным прибором.
Пожалуй вот более правильная схема, которую стоило бы рекомендовать:
Она явно лучше по допустимому напряжению, так как пробивное напряжение резисторов и конденсаторов СМД обычно принимают за 100 вольт. Встречал утверждения, что они выдерживают и 200-250 вольт. Не проверял. Но если вы исследуете достаточно высоковольтные цепи, стоит применить именно такую схему.
Я ее никогда не делал, рекомендаций по настройке (подбору конденсаторов С2, С3, С4) дать не могу.
Активные щупы с малой входной ёмкостью
Активный Щуп
Активные щупы с малой входной ёмкостью. И. Шиянов.
________________________________________________________________________
https://nowradio. *****/pribory%20dly%20nastroyki%20KV-UKV%20apparatury. htm
https://*****/forum/download/file. php? id=16793
Налаживание радиоприемных устройств часто требует проверки гетеродинов измерения параметров генерируемою им ВЧ-напряжения. К сожалению, сделать это непосредственно с помощью ВЧ — осциллографа или милливольтметра бывает затруднительно. Очень большое влияние из работу микромощного генератора (гетеродина) оказывает входная емкость прибора, входное сопротивление. Например, вход популярного осциллографа С1-65 емкостью 30 pF и сопротивлением 1М может не только исказить результаты измерения, но даже сорвать генерацию гетеродина. А тут еще и коаксиальный кабель с волновым сопротивлением 50 Ом. Конечно, можно подключить вход через конденсатор 1 pF, но это может очень сильно исказить результат измерения (уровень ВЧ-напряжения достигший входа измерительного прибора может быть и 100 раз и более заниженным). Лучше всего пользоваться активным щупом, представляющим собой истоковый повторитель на высокочастотном полевом транзисторе имеющим входную емкость менее 1 pF, и входном сопротивлением более 10 МОм при выходном сопротивлении 50 Ом. Такой щуп, выполненный в виде отдельной экранированной коробки можно расположить в непосредственной близости от точки измерения, соединить с ней кратчайшими проводниками, полностью исключив влияние волнового сопротивления кабеля емкости прибора и кабеля входного сопротивления прибора на результат измерения. Более того, сам измерительный прибор может быть расположен на значительном расстоянии от точки измерения (можно использовать очень длинный соединительный кабель).
Принципиальная схема активного щупа на полевом транзисторе BF998 показана на рисунке. На схеме транзистор показан в корпусе так чтобы была понята его цоколёвка. Входная емкость щупа примерно 0,7 pF она образована тремя последовательно включенными конденсаторами С1-С3. Входное сопротивление 10 мегаом. Измеряемое ВЧ напряжение поступает на первый затвор транзистора. Напряжение смещения на этом затворе равно половине напряжения питания и создано резистивным делителем R2-R3. На затвор напряжение смещение подается через резистор R1 сопротивлением 10 Мом. Входная емкость транзистора BF998 равна 2,1 pF, поэтому напряжение, полученное в результате измерения нужно умножать на 3. Нагрузкой является резистор R4 его сопротивление должно быть таким как волновое сопротивление кабеля. Щуп работает в частотном диапазоне от 100 kHz до 1 GHz с неравномерностью коэффициента передачи по напряжению не более 7 5dB. На частотах более 1 GHz погрешность значительно возрастает. Источником питания служит сетевой адаптер от телеигровой приставки типа «Денди» (выходное постоянное нестабильное напряжение 8-11V) Напряжение стабилизируется на уровне 5V интегральным стабилизатором А1. Диод VD1 служит для защиты от ошибочного неправильного подключения источника. Питать щуп можно и от лабораторного источника напряжением 8…20V. Конструктивно щуп выполнен в экранированном корпусе неисправного всеволнового тюнера телевизора «LG» Монтаж печатно-объемным используя демонтированную плату данного тюнера. Монтаж первого затвора полевого транзистора на R1 и конденсаторы С1-С3 нужно сделать «на воздухе», чтобы исключить влияние емкости печатной платы и экранированного корпуса на входную цепь. Вход — два монтажных провода длиной не более 10 см. Провод, соединенный с С1 не должен соприкасаться изоляцией с платой или экраном корпуса.
Для питания 5V лучше использовать BF1005 или
BF1012Sесть в Платане.
Радиоконструктор №12 2007г
Активный Щуп Осциллографа
Журнал «Радио», номер 6, 1999г. Автор: И. Нечаев, г. Курск
https://www. *****/literature/radio/199906/p28_29.html
Широкополосные усилители с высоким входным сопротивлением, малой входной емкостью и низким выходным сопротивлением используются в различных устройствах. Одно из применений — входные щупы для осциллографов и другой измерительной аппаратуры. Как показано в этой статье, современные ОУ фирмы Analog Device позволяют решить эту задачу простыми средствами.
Осциллограф является одним из наиболее универсальных приборов, позволяющих измерять самые различные параметры электрического сигнала, а зачастую и значительно упрощать процедуру настройки электронных устройств. В некоторых случаях он просто незаменим. Однако многим знакома ситуация, когда подключение осциллографа к настраиваемому устройству приводит к нарушению его режимов. Виной тому в первую очередь служат вносимые в исследуемую цепь емкость и сопротивление входа осциллографа и его соединительного кабеля.
Большинство осциллографов, используемых радиолюбителями, имеют высокое входное сопротивление (1 МОм) и входную емкость 5…20 пФ. В сочетании с соединительным экранированным входным кабелем длиной около метра суммарная емкость возрастает до 100 пФ и более. Для устройств, работающих на частотах выше 100 кГц, такая емкость может оказать существенное влияние на результаты измерений.
Для устранения этого недостатка радиолюбители пользуются неэкранированным проводом (если уровень сигнала достаточно большой) или специальным активным щупом, в состав которого входит усилитель с высоким входным сопротивлением, выполненный, как правило, на полевых транзисторах [1-3]. Применение такого щупа значительно снижает величину вносимой в устройство емкости. Однако недостатками некоторых из них являются низкий коэффициент передачи или наличие на выходе сдвига уровня, затрудняющего измерение постоянного напряжения. Кроме того, они имеют узкий диапазон рабочих частот (до 5 МГц), что также ограничивает их применение и требует коротких соединительных кабелей. Несколько лучшие параметры имеет щуп, описанный в [2]. Следует отметить, что все эти щупы могут эффективно работать и с осциллографами, имеющими высокое входное сопротивление.
В настоящее время все большее распространение получают широкополосные осциллографы с диапазоном рабочих частот до 100 МГц и выше, имеющие низкое входное сопротивление — 50 Ом, поэтому их подключение к настраиваемому устройству зачастую становится практически невозможным. Не все из них комплектуются активными щупами, а применение резистивных делителей приводит к заметному снижению чувствительности.
Активный щуп, описание которого предлагается вниманию читателей, свободен от указанных недостатков. Он работает с различными осциллографами, входное сопротивление которых может быть низкоомным — 50 Ом или высокоомным — до 1 МОм, имеет диапазон рабочих частот 0…80 МГц и достаточно высокое входное сопротивление на низких частотах — 100 кОм. Его коэффициент передачи — 1 или 10, т. е. он не только не ослабляет, но и усиливает сигнал. К достоинствам щупа можно отнести и его небольшие габариты.
Таких параметров удалось достигнуть за счет применения современного быстродействующего ОУ фирмы Analog Devices. В частности, в данном щупе использован ОУ AD812AN (Чип – Дип – 180р Платан – 190р), который имеет следующие основные характеристики:
Верхняя рабочая частота — не менее 100 МГц; входное сопротивление — 15 МОм при входной емкости 1,7 пФ; входное напряжение — до +13,5 В, а скорость нарастания выходного напряжения — 1600 В/мкс; выходной ток (при выходном сопротивлении 15 Ом) — до 50 мА; потребляемый ток в отсутствии входного сигнала — 6 мА.
Кроме того, ОУ имеет низкий уровень гармоник (-90 дБ на частоте 1 МГц и нагрузке 1 кОм) и малый уровень шума (3,5 нВ/^Гц), защиту от К3 (ток ограничен до 100 мА), рассеиваемая небольшим корпусом мощность достаточно велика — 1 Вт. К этому следует добавить, что цена микросхемы, содержащей два ОУ с такими параметрами, относительно невысока ($3…4).
Схема активного щупа приведена на рис. 1. В основном она соответствует стандартной схеме включения ОУ. Коэффициент передачи КU изменяется переключением SA1 элементов цепи обратной связи и имеет два значения: 1 и 10. Переключателем SA2 выбирают режим работы: с «закрытым» входом, когда на входе включен конденсатор С1 и постоянная составляющая напряжения на вход не проходит, или с «открытым» входом, когда она проходит.
АЧХ щупа при работе на нагрузку сопротивлением 50 Ом для разных коэффициентов передачи несколько различается. Для Кu=1 она имеет небольшой подъем (до 20…25 %) на частотах 20…45 МГц и снижается до уровня 0,7 на частотах 70…80 МГц и до уровня 0,3 на 100 МГц. Для Кu=10 АЧХ ровная до 20 МГц и плавно падает до 7 на частоте 40 МГц, а на частоте 100 МГц уменьшается до 3.
При подключении щупа к осциллографу или частотомеру с большим входным сопротивлением (обычно Rвх = 1 МОм) через высокочастотный кабель длиной 1 м амплитуда максимального выходного напряжения ОУ достигает 12 В (при Uпит=+15 В) на частотах до 10…15 МГц и плавно уменьшается до 3 В на частотах 30…40 МГц. При нагрузке щупа на низкоомный вход (Rвх = 50 Ом) осциллографа максимальное выходное напряжение составляет 4 В на частотах до 1 МГц и снижается до 0,5 В на частотах 30…40 МГц. Следует особо отметить, что наличие режима усиления позволяет наблюдать на экране осциллографа с чувствительностью 10 мВ на деление входные сигналы с амплитудой 200…300 мкВ!
На входе усилителя установлено относительно небольшое сопротивление R3 (100 кОм). Сделано это потому, что входной ток ОУ составляет доли мкА и смещение уровня постоянного напряжения на выходе составляет в этом случае примерно 50 мВ при КU= 1 или 500 мВ при Кu= 10. Увеличение же этого сопротивления приведет к соответствующему увеличению смещения. Как показывает практика измерений широкополосных сигналов, вполне достаточно входного сопротивления щупа порядка 100 кОм. Его возможно увеличить и до 1 МОм, изменив соответственно R3, но это приведет к указанным выше последствиям. На высоких частотах входное сопротивление меньше и носит в основном емкостный характер, но это не сказывается на процедуре измерения, так как на высоких частотах высокоомные цепи встречаются редко.
О конструкции. Большинство деталей щупа размещено на печатной плате из двухстороннего фольгированного стеклотекстолита, эскиз которой приведен на рис. 2. На одной ее стороне размещают ОУ и все резисторы, на второй — конденсаторы С2-С5. Соединения между сторонами монтажа выполняют проводниками через отверстия в плате. Переключатели устанавливают на корпусе щупа, а конденсатор С1 — непосредственно на SA1.
Корпус щупа (рис. 3) состоит из пластмассового тубуса 1 (от фломастера диаметром около 18 мм), который вставлен в металлический кожух 2. Внутри тубуса размещена плата 3, на нем укреплены переключатели SA1 и SA2 (4 и 5). Через дно тубуса выведены соединительный и питающие провода — 6. Общий провод платы соединен с кожухом, а через отверстие в нем выведен провод для металлического штыря ХВсе внутренние соединения надо делать проводом минимальной длины, а внешние — цепи питания и сигнала — соответственно экранированным и ВЧ кабелем.
Так как в микросхеме один из двух ОУ не используется, его входы (выводы 5 и 6) соединены с общим проводом.
Налаживание устройства сводится к установке требуемого коэффициента усиления, который при работе щупа с осциллографом с высоким входным сопротивлением устанавливают равным 10 на частоте 10 МГц подбором резистора R1 (при замкнутом SA1). Если щуп используют с осциллографом с низкоомным входом, часть выходного сигнала гасится на согласующем резисторе R5. Поэтому в схему вводят резистор R6, и подбирая его сопротивление (при разомкнутом SA1), устанавливают коэффициент передачи равным 1. При замкнутом SA1 (режим повышенной чувствительности) установку коэффициента усиления, равного 10, производят подбором резистора R1.
В устройстве применимы резисторы МЛТ, С2-10, С2-33, Р1-12, конденсаторы С1-С3 серии КМ или другие малогабаритные (К10-17, К10-47), С4, С5 — группы К52 или аналогичные. Можно использовать широкополосные ОУ AD812AR или AD817AN, AD818AN той же фирмы, которые дешевле из-за меньшей полосы частот (50 МГц), но их применение приведет и к сокращению полосы рабочих частот.
Для питания щупа необходим двухполярный стабилизированный блок питания с выходным напряжением %12…15 В. Надо заметить, что потребляемый ток при отсутствии сигнала составляет 10…15 мА, при работе на низкоомную нагрузку при подаче сигнала ток может возрастать до 100 мА.
Литература
1. Активный щуп для осциллографа. — Радио, 1988, # 12, с. 45.
2. Осциллограф — ваш помощник (активный щуп). — Радио, 1989, # 11, с. 80.
3. Активный щуп к осциллографу. — Радио, 1998, # 6, с 38.
Осциллографический ВЧ пробник с Свх = 0.5 пф
https://www. *****/ot07_19.htm
При осциллографических измерениях в высокочастотных устройствах входная емкость делителя может вносить значительные искажения в настраиваемый узел (например, при подключении пробника к контуру ВЧ генератора и т. п.). Делители с коэффициентом 1:1 имеют входную емкость порядка 100 пф и более (емкость кабеля плюс входная емкость осциллографа), что существенно ограничивает их частотный диапазон. В то же время стандартные пассивные делители 1:10 с входной емкостью 12 – 17 пф снижают чувствительность осциллографа до 50 мВ на деление (при максимальной чувствительности по входу равной 5 мВ / деление, типичной для большинства промышленных осциллографов), а также имеют все еще слишком большую входную емкость для проведения неискажающих измерений в ВЧ цепях, где емкости контуров могут иметь такое же значение.
Данная проблема решается использованием для измерений специальных активных пробников, выпускаемых для этой цели (например, фирмой Tektronix). Однако, эти устройства довольно трудно найти и их цена (от $150 и выше) сопоставима с ценой хорошего б/у осциллографа. В то же время не представляет большой сложности самостоятельно изготовить простой активный осциллографический пробник с малой входной емкостью, что и было сделано автором.
Активный осциллографический пробник предназначен для измерений переменных напряжений в низковольтных ВЧ схемах и имеет следующие характеристики:
- Диапазон измеряемых амплитудных значений сигнала – от 10 мВ до 10 В Частотная характеристика – линейна от 10 КГц до 100 МГц при малом сигнале Выходной сигнал – инвертированный, с коэффициентом деления 1:2 Напряжение питания – 12 вольт (4 * CR2025) или внешний источник Входная емкость – 0.5 пф ( 0.25 пф с внешним делителем 1 : 10 ) Входное сопротивление – 100 килоом Потребляемый ток – 10 мА Размеры 60 х 33 х 16 мм
Внешний вид изготовленного прибора приведен на фото.
Конструкция прибора
Принципиальная схема пробника приведена на рисунке. Прибор собран на трех малошумящих СВЧ транзисторах 2SC3356 с граничной частотой 7 ГГц. Коэффициент усиления по напряжению составляет около 23 дб. Выходной эмиттерный повторитель служит для дополнительной развязки усилителя от нагрузки и может быть исключен, если пробник будет использоваться с одним и тем же осциллографом. Цепочка из светодиода, стабилитрона на 9 вольт и резистора служит индикатором включения и пороговым индикатором напряжения батареи питания. Питающее напряжение 12 вольт необходимо и достаточно для того, чтобы получать на выходе прибора максимальное амплитудное значение измеряемого сигнала до 5 вольт, и тем самым обеспечивать максимальный динамический диапазон до 50 дб при проведении измерений с установкой коэффициента отклонения, начиная от 5 мВ на деление (чувствительность большинства осциллографов).
Конструктивно прибор может быть собран в любом подходящем пластмассовом корпусе. Главное требование к материалу корпуса – прочность и низкие потери материала на высоких частотах. Для уменьшения входной емкости пробника не следует размещать его в металлическом корпусе: при входном сопротивлении 100 килоом и малой длине соединений внутри корпуса внешние наводки не играют роли, особенно если учесть, что нижняя граница частотного диапазона была сознательно выбрана намного выше частоты электрической сети.
Пробник включается нажатием кнопки в момент проведения измерений, что гарантирует работу прибора без замены внутреннего источника питания в течение длительного времени. Кроме того, как видно на фото, кнопка включения защищена от случайного нажатия, когда прибор не используется для работы. Для работы в непрерывном режиме предусмотрен разъем для подключения внешнего источника питания 12 вольт, 10 мА.
Внутренний вид прибора показан на фотографии. Металлическая упругая пластина с четырьмя винтами фиксирует пакет из расположенных под ней четырех литиевых батарей CR2325. Выходной коаксиальный кабель должен быть надежно закреплен прижимной пластиной на винтах, как видно на фото. Входной СВЧ усилитель смонтирован на подходящей миниатюрной плате (автор применил керамическую плату размерами 10 х 10 миллиметров с 12 точками для припайки выводов, от элемента этажерочного микромодуля – эти детали изготовлялись в 60-е годы до появления микросхем и весьма удобны для изготовления миниатюрных схем с современными SMD компонентами).
Налаживание
Этот этап работы должен быть проведен весьма тщательно для получения нужного результата.
После сборки усилителя необходимо прежде всего точно установить его рабочую точку подбором резистора на 120 килоом для получения максимальной амплитуды неискаженного сигнала на выходе. В данной схеме и при свежих элементах питания этот режим достигается при установке постоянного напряжения от +5.2 до +5.3 вольта на эмиттере второго транзистора. Рабочая точка второго эмиттерного повторителя не требует настройки при указанных номиналах резисторов. Далее следует точно подобрать значение нижнего по схеме резистора (в данном случае 20 килоом) входного делителя для получения требуемого маштаба ( 1 : 2 ) передачи сигнала между входом и выходом прибора на относительно низкой частоте (порядка 100 КГц). Заметим, что входное сопротивление усилителя при указанных номиналах деталей составляет около 5 килоом (на той же частоте), так что при отсутствии указанного резистора коэффициент передачи устройства будет выше требуемого примерно на 3 дб (величина ослабления входного сигнала равняется (105 / 5) = 26 дб, в то время как общий коэффициент усиления схемы равен 23 дб, а требуемый коэффициент передачи всего устройства должен быть равен 0.5, т. е. минус 6 дб). Подбор компенсирущих емкостей ( 0.5 пф параллельно резистору на 100 килоом, и подстроечный конденсатор в нижней ветви входного делителя) осуществляется путем сравнения коэффициента передачи на двух частотах, например, 1 МГц и 30 МГц, и подбора емкостей до получения нужного постоянного коэффициента передачи устройства. Далее производится окончательная проверка устройства на верхней рабочей частоте, если у радиолюбителя имеется такая возможность. В заключение проверяется фактическая входная емкость пробника на высокой частоте (например, подключением его к контуру с известными параметрами работающего генератора и контролем изменения частоты выходного сигнала по цифровому частотомеру или приемнику). При правильном выполнении конструкции прибора она не должна существенно отличаться от указанного на схеме значения (суммарная входная емкость в изготовленном автором пробнике, измеренная на частоте 20 МГц, составила 0.505 пф).
Замечания
При создании данного прибора не ставилась задача построения профессионального измерительного устройства высокой точности. Использованная автором простая схема усилителя является несимметричной и увеличивает длительность заднего фронта меандра на выходе прибора (за счет паразитных емкостей кабеля и входа осциллографа) при подаче на вход пробника прямоугольного сигнала с малой длительностью нарастания и спада напряжения. Этот эффект проверялся автором с помощью логического генератора прямоугольных импульсов частотой 2 МГц и длительностью переднего и заднего фронтов в 4 наносекунды, с выходной амплитудой от нуля до 4 вольт. Измеренная длительность заднего фронта прямоугольного сигнала на выходе изготовленного автором пробника составляет около 50 наносекунд при перепаде напряжения на выходе от 2 в до нуля. Данное обстоятельство ограничивает неискаженную по форме амплитуду наблюдаемого синусоидального сигнала с ростом его частоты. Разумеется, можно улучшить этот показатель тем или иным способом, но это будет приводить к росту потребляемого пробником тока от источника питания, что нежелательно. Простые расчеты дают приближенную формулу для определения максимальной амплитуды сигнала на входе пробника в зависимости от его частоты: А = min (10 , 25 / F [MHz]). Другими словами, на частоте 10 МГц максимальная амплитуда входного сигнала не должна превышать 2.5 вольт, а на частоте 100 МГц это значение падает до 250 мВ.
Простейший и самый надежный способ расширить динамический диапазон пробника – при необходимости подключать к его входному щупу дополнительный внешний делитель 1 : 10, что и было сделано автором. Конструкция такого дополнительного делителя приведена на фото. Подстроечный конденсатор частотной коррекции ( 2 – 6 пф ) служит для компенсации малой паразитной емкости (около 0.25 пф), образованной контактами щупа и резистором МЛТ 0.125 на 100 килоом. Как видно на снимке, этот резистор располагается между параллельно расположенными контактными стержнями и должен быть жестко припаян к ним коротко обрезанными до длины около 5 мм выводами (автор использовал контакты от разъемов типа МРН или аналогичных).
Данный пробник создавался автором для измерений в цепях синусоидальных ВЧ сигналов в контурах генераторов и усилительных каскадов транзисторных схем, и он в целом решает поставленную задачу. Именно по этой причине в пробнике и был выбрано указанное выше соотношение между всеми основными параметрами прибора – его частотным диапазоном, высокой чувствительностью, достаточно большим входным сопротивлением и минимально возможной входной емкостью измерителя, а также небольшим потребляемым током. Радиотехника – это всегда компромисс при заданных разработчиком предельных значениях параметров.
Активный щуп для С1-94.
https://*****/izmeren/369-tri-pristavki-k-s1-94.html
Входная емкость осциллографа С1-94 с делителем 1 : 1 существенна (150 пФ) для высоких частот, поэтому полное входное сопротивление осциллографа на таких частотах часто оказывается слишком низким. Улучшить этот показатель поможет активный щуп, разработанный И. Нечаевым из г. Курска. Схема активного щупа приведена на рис. 78. Его входной каскад выполнен на полевом транзисторе (VT1) с изолированным затвором. Для защиты транзистора от перегрузок входным напряжением в цепи затвора установлены диоды VD1 и VD2.
Со стока полевого транзистора исследуемый щупом сигнал поступает на выходной каскад, собранный на биполярном транзисторе VT2. В этом каскаде применена отрицательная обратная связь по напряжению через резистор R4 и конденсатор С4, благодаря чему щуп обладает малым выходным сопротивлением, широкой полосой пропускания и хорошо работает на кабель длиной до 1,5 м. Коэффициент передачи щупа достигает 1, входная емкость — 5… 6 пФ, входное сопротивление — 250 кОм, полоса пропускания (по уровню — 3 дБ) —0,01 МГц. На вход щупа можно подавать сигнал амплитудой не более 3 В.
Для щупа подойдут транзисторы КП301Б—КП301Г, КП304 (VT1), КТ315А—КТ315Г, КТ316, КТ342 с любым буквенным индексом (VT2). Диоды могут быть любые кремниевые маломощные с минимальными емкостью и обратным током.
Конструкция щупа зависит от используемых деталей. Например, автор разместил детали на печатной плате размерами 55X15 мм из стеклотекстолита и поместил плату в алюминиевый стаканчик из-под валидола. С осциллографом щуп соединяют любым высокочастотным экранированным кабелем, желательно небольшого диаметра.
При налаживании щупа сначала подбирают (если это понадобится) резистор R1, чтобы обеспечить указанный на схеме режим работы транзистора VT2. Коэффициент передачи устанавливают подбором резистора R4, а верхнюю границу полосы пропускания — подбором конденсатора С4. Нижняя граница полосы пропускания зависит от емкости конденсатора С1.
Желательно проверить амплитудно-частотную характеристику щупа. Если на ней будет обнаружен подъем иа частотах, соответствующих верхней границе полосы пропускания, придется включить последовательно с конденсатором С4 резистор сопротивлением 30Ом
Взято отсюда: https://www. *****/lcmeter3.htm
Частотометр, измеритель ёмкости и индуктивности – FCL-meter
На транзисторе VT1 собран усилитель сигнала частотометра F1. Схема особенностей не имеет за исключением резистора R8 (100 Ом), необходимого для питания выносного усилителя с малой входной ёмкостью, во многом расширяющего область применения прибора. Его схема показана на рис. 2
.
При пользовании прибором без внешнего усилителя необходимо помнить, что его вход находится под напряжением 5 Вольт, и поэтому необходим развязывающий конденсатор в сигнальной цепи.
Предделитель частотометра F2 собран по типовой для большинства подобных прескалеров схеме, лишь введены ограничительные диоды VD3, VD4. Необходимо заметить, что при отсутствии сигнала предделитель самовозбуждается на частотах около 800-850 МГц, что является типичным для высокочастотных делителей. Самовозбуждение пропадает с подачей на вход сигнала от источника с входным сопротивлением близким к 50 Ом. Сигнал с усилителя и прескалера поступает на DD2.
Выносной щуп к осциллографу.
https://forum. /index. php? showtopic=13268&st=440
На рис. 3 представлена принципиальная схема повторителя напряжения, выполненного в виде электронного щупа к осциллографу. Схема повторителя содержит четыре транзистора. Согласованная пара полевых транзисторов VT1, VT2 с n-каналом работает в дифференциальном каскаде, транзистор VT3 является источником тока для указанного каскада, а транзистор VT4 включен в схему усилителя напряжения с общим эмиттером.
Устройство работает следующим образом. Входной сигнал подается на затвор транзистораVT1. Напряжение, усиленное полевым транзистором VT1, поступает на базу транзистора VT4.Выходное напряжение повторителя снимается с коллекторной нагрузки — резистора R10.Одновременно выходное напряжение прикладывается к затвору второго транзистора дифференциальной пары VT1, VT2. Глубокая отрицательная обратная связь и большое дифференциальное сопротивление источника тока обеспечивают близкий к единице коэффициент передачи повторителя. Выбором тока коллектора транзистора VT4 (около 4 мА) снижается нелинейность повторителя в области высоких частот. Температурная стабильность устройства обеспечивается за счет глубокой отрицательной обратной связи и введения источника тока на транзисторе VT3.
Основные характеристики повторителя напряжения представлены на рис. 4. Кривыми 1 —4 показана амплитудно-частотная характеристика устройства для различных значений емкости нагрузки. С увеличением емкости от 15 до 100 пФ полоса пропускания повторителя, измеренная на уровне 3 дБ, сужается от 25 до 10 МГц. Указанная выше емкость нагрузки складывается из емкости кабеля и входной емкости осциллографа.
Рис. 3. Вариант схемы повторителя напряжения — щупа к осциллографу
Необходимо иметь в виду, что современные радиочастотные кабели с полиэтиленовой изоляцией имеют погонную емкость, увеличивающуюся с уменьшением волнового сопротивления. Так, например, типичное значение погонной емкости кабеля с волновым сопротивлением 50 Ом равно ПО…125 пФ, с волновым сопротивлением 75 Ом — в пределах 60…80 пФ. У высокоомных кабелей и кабелей с полувоздушной изоляцией погонная емкость может быть ниже, однако они сравнительно малодоступны
Рис. 4. Амплитудно-частотные характеристики щупа по схеме рис. 3
Кривая 5 на рис. 4 иллюстрирует зависимость допустимого напряжения сигнала при уровне гармоник около 5% с повышением частоты. Зависимость позволяет выбрать максимально допустимое значение входного, сигнала для предполагаемого спектра входных частот.
Можно рекомендовать следующую методику использования повторителя напряжения. При исследовании слабых широкополосных сигналов с амплитудами 0… 200 мВ чувствительность осциллографа устанавливается от 5 до 50 мВ/дел., при которой изображение на экране должно занимать от 1/3 до 2/з его высоты. Поскольку масштабная сетка современных осциллографов имеет 6…8 делений по вертикали, уход границ изображения за пределы экрана является естественным индикатором превышения амплитудой сигнала допустимого уровня на высоких частотах — 150…250 мВ.
Вместе с тем, работа с сигналами, изображение которых не выходит за пределы экрана, обеспечивает отсутствие нелинейных искажений до частот не менее 12…15 МГц.
Далее
https://forum. /topic. cgi? id=48:841-48
Немного обещанной теории
Емкость прямо пропорциональна площади проводников и обратно пропорциональна расстоянию между ними. Там еще есть коэффициент, но для нас это не важно сейчас.
Имеем два проводника. Центральная жила и экран провода. Расстояние между ними определяется диаметром провода. Площадь экрана сильно снизить не получится. Да и не надо. Остается снижать ПЛОЩАДЬ ПОВЕРХНОСТИ ЦЕНТРАЛЬНОЙ ЖИЛЫ.
Т.е. снижать ее диаметр насколько это технически целесообразно без потери механической прочности.
Ну а чтобы повысить эту самую прочность при уменьшении диаметра надо выбрать материал попрочнее.
Провод можно представить так:
Распределенная емкость по длине провода. Ну а чем больше будет удельное сопротивление материала центральной жилы, тем меньшее влияние соседние участки (соседние емкости) будут оказывать друг на друга. Поэтому целесообразен провод с высоким удельным сопротивлением. По этой же самой причине нецелесообразно делать провод щупа слишком длинным.
Разъемы рассматривать не буду. Лишь скажу, что оптимальным для осциллографа считаю разъемы BNC. Они чаще всего и применяются. Миниджек, аудиоразъем я бы применять не рекомендовал (хотя сам применяю, в силу того, что не использую осциллограф в цепях со значительными напряжениями). Он опасен. Дернули провод при проведении исследований цепей с хорошим напряжением. Что происходит далее? А далее миниджек, скользя по гнезду, может вызвать замыкание. И даже если в силу разных причин ничего не произошло, на самом миниджеке будет присутствовать это напряжение. А если он упадет к вам на колени? А там открытый центральный контакт и земля рядом…
Лето, жарко, любите работать в трусах? Выбирайте BNC (не реклама). BNC тем и хорош. Его не выдернешь просто так. А даже если и случилось – он закрытый. Ничего опасного произойти не должно, то что в трусах, не пострадает))
Дополнительную информацию можно почерпнуть из цикла статей Входные узлы самодельных осциллографов. Так, теорией поутомлялись, теперь
САМОДЕЛЬНЫЙ ЩУП ДЛЯ ОСЦИЛЛОГРАФА
Самодельные осциллографы перестают быть редкостью по мере развития микроконтроллеров. И естественным образом возникает потребность в щупе для него. Желательно со встроенным делителем. Некоторые из возможных конструкций рассмотрены в данной статье.
Щуп собран на отрезке фольгированного стеклотестолита и помещен в металлическую трубку, выполняющую роль экрана. Чтобы не вызывать аварийных ситуаций, когда и если щуп падает на включенное испытуемое устройство, трубка покрыта термоусадкой. Без покрытия заготовка выглядит вот так:
Щуп в разобранном виде:
Конструкции могут быть разными. Просто нужно учитывать некоторые вещи:
- Если выполняете щуп без делителя, т.е. он не содержит в себе больших сопротивлений и переключателей, т.е. элементов подверженных электромагнитным наводкам, то целесообразно экранированный провод щупа протягивать до самой иглы. В этом случае дополнительная экранировка элементов вам не понадобится и щуп можно выполнять из любого диэлектрика. Например использовать один из щупов для тестера.
- Если в щупе выполнен делитель, то когда вы берете его в руки, вы неизбежно будете увеличивать наводки и помехи. Т.е. потребуется экранировка элементов делителя.
В моем случае соединение трубки с экраном (точнее с обратной стороной стеклотестолита) выполнено припаиванием пружинки на тектолит, которая и создает контакт между экраном и платой щупа.
В качестве иглы использовал «Папу» от разъема типа ШР. Но ее можно выполнить и из любого другого подходящего стержня. Разъем от ШР удобен тем, что его «Маму» можно впаять в зажим, который можно будет при необходимости надевать на щуп.
Выбор осциллографа для диагностики авто
Бюджет — около 200 долларов. Назначение — диагностика X-Trail на любительском уровне. То есть деньги я этим зарабатывать не планирую.
Основные варианты: 5 Channel PC Computer USB Digital Storage Oscilloscope
, 60$.
Pocket Digital-Oscilloscope ARM DSO203 Nano V2 / Quad
, 180$ Привлекателен размерами и выводом на свой экран — удобно не таскать ноут.
Еще вариант купить простой ЮСБ осциллограф с датчиками в комплекте DiSco Express
, 120$.
Жду советов, особенно от людей с опытом диагностики Икса осциллографом:)
Последний раз редактировалось kaskas; 15.12.2011 в 15:16 .
Дело хорошее!:) 5 Channel PC Computer USB Digital Storage Oscilloscope
+ имеет 5 каналов, т.е. можно просматривать одновременно 5 сигналов. Но для машины столь много не требуется, если только «парад зажигания» смотреть. Но на наших катушках сложновато это. — чем больше каналов, тем больше задействовано оперативной памяти, как понимаю, снижается быстродействие.
Pocket Digital-Oscilloscope ARM DSO203 Nano V2 / Quad
Карманный осциллограф наверняка хорош тем, что компа не надо. Но лично меня смущает маленький экран, иногда требуется и амплитуду поточнее померить. Несовсем понял его характеристики.
У меня DiSco 2. Там два канала, но этого вполне хватет, иногда требуется еще один канальчик, но можно обойтись. Несомненный плюс — он заточен именно под диагностику. К нему идет простенькая, о удобная программка, которая выводит градусы коленвала на экран. Можно открытие-закрытие клапанов смотреть. В комплекте идут датчики. Емкостной
датчик не надо брать, он на индивидуальных катушках не работает. Они слишком хорошо экранированы. Есть еще датчик
разряжения
, метода работы с ним хорошо расписана, но ИМХО достаточно сомнительная, что касается разряжения во впуске. Но вещь в целом полезная, можно выхлоп смотреть (пропуски воспламенения), пульсации картерных газов. Хорошая штука датчик
давления
, тоже имеет смысл взять. Кроме режима осциллографа в нем есть режим самописца (запоминает осциллку за длительный период) и логический анализатор (че это. я еще не понял:).
Вот сайт разработчиков DiSco 2. Правда, вложения в постах нельзя посмотреть без самого осциллографа, он как ключ доступа работает. https://club.motor-master.ru/index.php?c=2
Главное в этом деле — софт. Если к осциллографу не прилагается специальный, заточенный под диагностику двигателей софт — грош цена такому осциллографу в плане автодиагностики. У меня два Диско. И первая модель, и вторая. Вполне хватает для бытовой диагностики. Третий канал там есть, он цифровой, для внешней синхронизации. И в нашем авто им легко пользоваться, т.к. сигнал на катушки именно в цифровой форме и идет. Можно попытаться напрямую подать сигнал первого цилиндра на вход внешней синхронизации. Сделаю это, как только руки дойдут. Парад цилиндров снимается одним каналом. Для этого просто нужен соответствующий датчик. Наши катушки зажигания лучше анализировать индуктивными датчиками, которые не сложно сделать самостоятельно. Для этого хорошо подходят миниатюрные релюшки, коих на радиорынке можно купить пригоршню по рублю. Все совершенно реально, частично проверено уже лично.
Оба «Диско» покупал в виде голой платы, даже без корпуса. Все остальное, корпус, провода, датчики — далаю себе сам. Но это только для затравки. В планах покупка более продвинутого осциллографа «MT Pro». С этим инструментом уже действительно можно делать много сложных дел.
Последний раз редактировалось vtral; 16.12.2011 в 11:58 .
Сейчас имеет смысл покупать только второй Диско, не первый? Почему-то на их сайте за сопоставимые 3 тр продаются и первый и второй Диско https://www.motor-master.ru/modules.p. s&lid=21&cid=1
А по Диско 2 у них спец предложение — до 15 янв 2012 ценник 2900р на готовое изделине с корпусом и 2 щупами. https://www.motor-master.ru/modules.p. lid=173&cid=10
У нас на проводе на первую катушку есть токовая петля, видимо для синхронизации. Видимо туда нужен какой-то индукционный датчик?
А эти катушки куда вешать?
Скорее тут нужен датчик на эффекте Холла, типа токоизмерительных клещей. Вообще крайне полезный прибамбас в автодиагностике. Хорошо бы такой датчик иметь. Можно купить готовый, т.к. изготовить его довольно сложно в домашних условиях.
Но, в целях внешней синхронизации по 1му цилиндру, достаточно гальванически завести сигнальный провод, управляющий катушкой зажигания первого цилиндра, на вход внешней синхронизации Диско. Стартовать синхронизацию по спаду этого импульса.