Блокинг генератор: принцип работы
Устройства этого типа используются для создания сигналов с большой скважностью, повторяющихся редко. В них используется трансформатор, который включён в цепь обратной связи. Наличие гальванической развязки на выходе позволяет формировать высоковольтные импульсы. Эта особенность применяется для питания блоков строчной развёртки, катушек «Тесла».
Как выглядит блокинг генератор
Простую схему блокинг генератора можно собрать без затруднений в домашних условиях.
Принцип работы
Разобраться с функционированием блокинг генератора поможет схема, изображённая ниже.
Принципиальная схема типового генератора
В следующем перечне приведены основные этапы работы:
- После подачи напряжения через резистор R1 происходит зарядка конденсатора C Время завершения этого процесса определяется параметрами данных элементов.
Величину тока ограничивает сопротивление цепи, а напряжение на конденсаторных клеммах не успевает стать максимальным.
- Как только оно достигло определённой величины, транзистор начнёт открываться. Ток начинает проходить по цепи: обмотка трансформатора – коллектор – эмиттер. На этом этапе, напряжение почти мгновенно становится максимальным, а ток увеличивается относительно медленно.
- Он индуцирует ЭДС в обмотке трансформатора, соединённой с базой, что ещё больше увеличивает напряжение и открывает транзистор. Этот процесс завершается при насыщении сердечника трансформатора (материал не способен проводить магнитное поле определённой интенсивности). Также он прекратится при увеличении тока базы, до порога насыщения полупроводникового прибора.
- Транзистор закрывается. Начинается зарядка конденсатора C Индуктивность обмотки трансформатора образует ЭДС с направлением, противоположным первоначальному. Это ускоряет закрытие транзистора.
Принцип работы блокинг генератора проще понять с помощью временных диаграмм, которые иллюстрируют изменение электрических параметров в отдельных частях схемы.
Диаграммы токов и напряжений
Эти рисунки необходимо изучать совместно со следующим чертежом, на котором изображена другая принципиальная схема блокинг генератора.
Схема блокинг генератора
На рисунке выше не приведена определённая нагрузка (обозначение Rн). Диод выполняет демпфирующие функции. Он предотвращает броски напряжения, способные повредить транзистор.
Описанные выше этапы хорошо видны на диаграммах. Ниже отмечены особенности, которые характерны для второй схемы:
- Комбинацией t отмечен момент, когда напряжение на базе транзистора недостаточно для его открытия.
- Временной отрезок t – t1 обозначает период постепенного открытия транзистора. В конечной точке насыщение произошло, поэтому изменение тока в базе не оказывает влияние на форму импульса.
- Однако разряд конденсатора происходит. Поэтому происходит постепенное уменьшение тока базы.
- Так как нагрузка на коллекторе обладает индуктивными характеристиками, ток Ic не уменьшается. Продолжительность этого периода определяется параметрами сердечника трансформатора.
- С точки t2 начинается срез импульса. Ток, созданный индукцией, уменьшается, что провоцирует постепенное закрытие транзисторного ключа. На рисунках видно, когда появляется ток в обратном направлении. Этот процесс интенсифицирует разряд конденсатора. Скорость закрытия транзистора увеличивается, и срез получается крутым (образуется за малое время).
- Точкой t3 обозначен момент полного закрытия затвора транзистора. После него допустимо появление колебательных процессов. Для их блокировки в данной схеме установлен диод.
Запуск устройства
Перед запуском генератора, необходимо еще раз проверить правильность его соединений, чтобы у вас не образовалась весьма не дешёвая кучка транзисторов с надписью «Сгорел».
Первый запуск, желательно производить с контролем потребляемого тока. Этот ток, можно ограничить до безопасного уровня использовав резистор на 2-10 Ом в цепи питания генератора (коллектор или сток модулирующего транзистора). Работу генератора можно проверить различными приборами: поисковым приемником, сканером, частотомером или просто энергосберегающей лампой. ВЧ-излучение, мощностью более 3-5 Вт, заставляет её светиться.
ВЧ-токи легко нагревают некоторые материалы вступающие с ними в контакт в т. ч. и биологические ткани. Так, что будьте осторожны, можно получить термический ожог прикоснувшись к оголенным резонаторам (особенно при работе генераторов на мощных транзисторах). Даже небольшой генератор на транзисторе MRF284, при мощности всего около 2-х ватт — легко сжигает кожу рук, в чем вы можете убедиться на этом видео:
При некотором опыте и достаточной мощности генератора, на конце резонатора, можно зажечь т.н. «факел» — небольшой плазменный шарик, который будет подпитываться ВЧ-энергией генератора. Для этого достаточно просто поднести зажженную спичку к острию резонатора.
Т.н. «факел» на конце резонатора.
Помимо этого, можно зажечь ВЧ-разряд между резонаторами. В некоторых случаях, разряд напоминает крошечную шаровую молнию хаотично перемещающуюся по всей длине резонатора. Как это выглядит вы можете увидеть ниже. Несколько увеличивается потребляемый ток и во всем доме «гаснут» многие каналы эфирного телевидения))).
Плазменная дуга между резонаторами ВЧ-генератора на транзисторе MRF284
Расчёт
Принцип работы блокинг генератора понятен. Ниже приведён расчёт, который поможет правильно выбрать транзистор второй принципиальной схемы.
Для примера использованы следующие исходные параметры:
- частота (Ч) – 40 кГц;
- скважность (С) – 0,25;
- амплитуда (АМ) – 6 V;
- сопротивление Rнг (нагрузки) – 30 Ом;
- напряжения на выходе источника питания (НП) – 300 V.
Допустимое напряжение базы-коллектора должно быть от 1,5 до 2 раз больше, чем НП. Для этого примера – от 450 до 600 V.
Ток коллектора (Iк) определяют по формуле:
Iк должен быть равен или больше чем ((3…5)*АМ*КТФ)/ Rнг.
КТФ – это коэффициент, который учитывает особенности трансформации энергии (коллекторная – нагрузочная обмотки):
Таким образом, допустимый ток коллектора должен быть больше следующих величин:
((3…5)*6*0,024)/ 30 = 0,0144…0,024.
Максимальная частота (Чмакс, кГц) рассчитывается по следующей формуле:
Чмакс≥(5…8) * Ч = (5…8) * 40 = 200…320.
На основании полученных данных определяют тип транзистора.
Параметры подходящего условного прибора:
- максимальное напряжение коллектор-база (НКБ) – 620 V;
- максимальное напряжение база-эмиттер (НБЭ) – 8 V$
- максимальный ток коллектора (Iк) – 0,03 А;
- ток коллектор-база (Iкб) – 12 мкА;
- максимальная частота (Чмакс) – 1000 кГц;
- сопротивление базы (Rб) – 250 Ом.
Расчёт и практика позволяют собрать блокинг генератор своими руками
Чтобы создать блокинг генератор правильно, необходимо знать теорию и практику, уметь сделать расчёт.
Мощный ультразвуковой генератор
Эта схема может выдавать ультразвуковой сигнал мощностью в несколько ватт с применением пьезоэлектрического твитера или преобразователя другого типа. Рабочая частота — от 18000 до 40000 Гц, она может изменяться подбором емкости конденсатора С1. При больших значениях емкости будет формироваться сигнал в звуковом диапазоне, что позволяет использовать схему в аварийной сигнализации и других устройствах. В этом случае твитер может быть заменен обычным громкоговорителем.
Схема потребляет несколько сот миллиампер от источника питания 9 или 12 В. Батарейки рекомендуются только для кратковременных режимов работы.
Можно использовать это устройство для отпугивания собак и других животных, установив его около мест для сбора мусора и др.
Ультразвуковой режим работы достигается при величине емкости С1 от 470 до 2200 пФ. Для сигнала звукового диапазона требуется емкость в диапазоне 0,01-0,012 мкФ.
Принципиальная схема мощного ультразвукового генератора показана на рисунке, перечень элементов приведен в таблице.
Мощный ультразвуковой генератор. Все транзисторы должны быть смонтированы на радиаторах
Обозначение | Описание |
IC1 | Интегральная схема КМОП 4093 |
Q1, Q3 | Кремниевый n-p-n транзистор, TIP31 |
Q2, Q4 | Кремниевый p-n-p транзистор, TIP32 |
SPKR | Твитер или громкоговоритель, 4-8 Ом |
R1 | Потенциометр, 100 кОм |
R2 | Резистор, 10 кОм, 0,25 Вт, 5% |
R3, R4 | Резистор, 2,2 кОм, 0,25 Вт, 5% |
С1 | Пленочный или керамический конденсатор, 1200 пФ или 0,022 мкФ |
С2 | Электролитический конденсатор, 100 мкФ, 12 В |
Генератор на полевом транзисторе
Принцип работы этого устройства не отличается от рассмотренных выше вариантов. Но в схему внесены изменения, которые существенно повышают эффективность использования электроэнергии, надёжность и долговечность.
Схема блокинг генератора на полевом транзисторе
Рекомендации для правильной сборки изделия:
- Указанные на чертеже отечественные транзисторы и диоды можно заменить аналогичными импортными полупроводниковыми приборами с подходящими электрическими характеристиками.
- Сопротивление R2 подбирают так, чтобы на C1 напряжение в режиме холостого хода не превышало уровень 450 V. Такая настройка предотвратит пробой полупроводникового перехода транзистора VT
- Во избежание повреждения устройства, его нельзя включать без нагрузки.
- Сопротивление R6 выполняет защитные функции. Его наличие позволяет отключать генератор от сети при разомкнутой цепи прерывателя S
Блокинг-генератор
В этой статье я поведаю вам о том, что такое блокинг-генератор.
Блокинг-генератор — это генератор импульсов сравнительно небольшой длительности и большого периода. Он работает благодаря трансформаторной обратной связи. Из-за простоты блокинг-генератор широко применяют в компактных преобразователях напряжения (например в каждой второй схеме электронной зажигалки можно встретить эту схему).
Вот это блокинг-генератор(одна из многих вариаций этой схемы):
Как видите, он реально прост в сборке. Самая сложная часть в нем — это трансформатор.Но обо всем по порядку.
1) Принцип работы
Сначала обмотка 2 работает как «резистор», т.е. через нее и резистор протекает ток, который начинает открывать транзистор.Открывание транзистора приводит к появлению тока в обмотке 1, а это в свою очередь приводит к появлению напряжения на обмотке 2, т.е. напряжение на базе транзистора увеличивается еще, он открывается еще больше, и так происходит до тех пор, пока сердечник или транзистор не войдет в насыщение. Когда это произошло, ток через обмотку 1 начинает уменьшаться, следовательно напряжение на обмотке 2 меняет полярность, что приводит к закрыванию транзистора.Все, цикл замкнулся!
2) Детали
Трансформатор обмотка 1 обычно в 2 раза больше обмотки 2, а число витков и диаметр провода подбираются в зависимости от напряжения на обмотке 3 и тока через нее.
Резистор обычно берут в пределах 1кОм — 4,7кОм.
Транзистор подойдет почти любой.
3) Тест
Сначала соберем базовую схему генератора. Трансформатор вот такой от балласта энергосберегающей лампы:
На нем я намотал сначала обмотку 2 (18 витков проводом 0,4мм)
Изолировал ее (подойдет обычная изолента)
А потом намотал и обмотку 1 (36 витков тем же проводом, что и 2-ую)
И наконец, вставил сердечник и зафиксировал его той же изолентой
На этом трансформатор готов.
Транзистор я выбрал мощный: кт805, потому что в обмотке всего 36 витков не самого тонкого провода(малое сопротивление).
Блокинг генератор простейшый преобраз. для заряда конденсаторов гаус гана
- 2 Страниц
- 1
- Вы не можете создать новую тему
- Вы не можете ответить в тему
#1 Фан_ТОМ_АС
- Группа: Пользователи
- Сообщений: 817
- Регистрация: 08 August 10
Многие люди решившиеся собрать гаус останавлюются на вопросе с преобразователем, схем в интернете навалом, но эта проста как два пальца, некритична к деталям, неможет неработать ы практически все детали обитают в старом ТВ
собствено сама схема, ничего сложного. понадобятся такие детали как: сердечник у меня это ТОР (в ТВ есть П-образные ТВС они тоже годятся) есть еще PM. RM. ETD. Ш. U. и ТеДе и ТеПе
дальше нужен транзистор (в теликах их тоже можно найти)
Я использовал импортный НПН 13007 и советский ПНП кт837 С обеими транзисторами схема работает, нужно только поменять полярность питания и развернуть електролит. лакированый провод для намотки трансформатора, потолще и потонше( у меня 1мм и 0.56мм)
Блокинг-генератор. Расчёт блокинг-генератора
Всем доброго времени суток! В прошлой статье я рассказал о мультивибраторах, которые предназначены для генерирования прямоугольных импульсов. Но для этой, же цели применяются и другой тип генератора, который называется блокинг-генератором. Вообще же блокинг-генератор – это регенеративное устройство (генератор импульсов), основанное на однокаскадном усилителе, обратная связь в котором создаётся за счёт импульсного трансформатора.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Основное предназначение блокинг-генераторов заключается в создании мощных коротких импульсов с крутыми фронтами и большой скважностью. В настоящее время они используются в импульсных блоках питания в качестве задающих генераторов
Так же как и мультивибратор, блокинг-генератор может работать в следующих режимах: автоколебательном, ждущем, синхронизации и деления частоты, но наиболее распространенным являются автоколебательный и ждущий режимы.
Конструкции генераторов. Примеры схем
Устройство без генератора либо вообще ни на что не способно, либо предназначено для подключения к другому (которое скорее всего содержит генератор). Не будет преувеличением сказать, что генераторы являются таким же необходимым устройством в электронике, как регулируемый источник питания постоянного тока.
В зависимости от конкретного применения генератор может использоваться просто как источник регулярных импульсов («часы» в цифровой системе). От него может потребоваться стабильность и точность (например, опорный интервал времени в частотомере), регулируемость (гетеродин передатчика или приемника) или способность генерировать колебания в точности заданной формы (как например, генератор горизонтальной развертки осциллографа).
Автоколебательный блокинг-генератор
Как говорилось выше, автоколебательный блокинг-генератор является наиболее распространённым. Давайте рассмотрим его устройство и принцип работы на основе простейшей схемы, которая изображена ниже
Простейшая схема автоколебательного блокинг-генератора.
Простейший блокинг-генератор состоит из транзистора VT1 по схеме с общим эмиттером, трансформатора обратной связи Т1, демпфирующей цепи в виде диода VD1, времязадающей цепочки R2C1, базового резистора R1 и сопротивления нагрузки Rн.
Рассмотрим работу блокинг-генератора на основе временных диаграмм его работы, которые представлены ниже
Временные диаграммы работы блокинг-генератора.
Первая стадия (формирование фронта импульса
) начинается в момент времени t, то есть в момент включения питания либо по окончании периода предыдущего импульса. В этот момент транзистор оказывается заперт, а конденсатор С1 начинает заряжаться через резистор R2. По мере заряда конденсатора С1 увеличивается напряжение UBE на базе транзистора VT1, что приводит к постепенному открытию транзистора и возрастанию коллекторного тока IC. Возрастающий ток коллектора приводит к формированию ЭДС в трансформаторе и на его зажимах формируется возрастающее напряжение и ток пропорционально току коллектора транзистора VT1. Данная стадия заканчивается в момент времени t1, когда транзистор перешёл полностью в режим насыщения.
Вторая стадия (формирование вершины импульса
) начинается в момент времени t1. После того как транзистор VT1 перешёл в режим насыщения на него уже мало влияет ток протекающий через базу транзистора, поэтому нарастание амплитуды импульса прекращается и начинает формироваться плоская вершина импульса. В данный период времени напряжение на зажимах трансформатора практически не изменяется, поэтому напряжение на коллекторе не изменяется, но так как происходит разряд конденсатора С1 уменьшается напряжение на базе транзистора VT1, а следовательно и ток базы Ib. По мере уменьшения тока базы Ib начинает уменьшаться ток коллектора IC, но вследствие индуктивного характера коллекторной нагрузки, начинает увеличиваться ток намагничивания трансформатора, а, следовательно, и коллекторный ток транзистора VT1, в результате напряжение на коллекторе остаётся постоянным некоторое время, которое зависит от параметров трансформатора Т1.
Третья стадия (формирование среза импульса
) начинается в момент времени t2. В это время ток подмагничивания уменьшается и транзистор VT1 начинает закрываться под воздействием уменьшающегося тока базы Ib, вследствие разряда конденсатора С1. Когда транзистор полностью закроется коллекторный ток уменьшится практически до нуля и потенциал на выводах трансформатора Т1 также уменьшится, но вследствие этого в обмотках трансформатора возникнет ток обратный току коллектора IC и соответственно току базы Ib, что приведёт к ещё быстрейшему разряду конденсатора и образованию отрицательного всплеска напряжения на базе. Отрицательный импульс напряжения на базе транзистора VT1 ещё быстрее разрядит конденсатор, что уменьшит продолжительность среза импульса по сравнению с фронтом.
Четвёртая стадия (восстановление
) начинается в момент времени t3. В это время транзистор находится в полностью закрытом состоянии. В этот период времени происходит рассеивание энергии в конденсаторе и трансформаторе, запасённой в третьей стадии работы блокинг-генератора. В этот период времени в трансформаторе могут возникать некоторые колебательные процессы (изменение напряжения до уровня UK max), что в общем случае нежелательны, поэтому для предотвращения этого параллельно коллекторной обмотке трансформатора включают различные демпфирующие цепи, в данном случае эту роль выполняет диод VD1.
Двухтактный генератор для ленивых
Самая простая схема генератора, какую только мне приходилось когда-либо видеть:
В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.
Механизм генерации:
Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовый ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…
Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.
Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.
Расчёт блокинг-генератора в автоколебательном режиме
Как любая электронная схема параметры работы блокинг-генератора полностью зависят от величин элементов составляющих схему, поэтому для расчёта необходимо задаться параметрами схемы.
Для расчёта блокинг-генератора обычно задаются следующими выходными характеристиками схемы: амплитуда импульсов Um, период прохождения импульсов Т, длительность импульса τi, сопротивление нагрузки RH.
Так как в настоящее время блокинг-генераторы очень часто используют в качестве задающих генераторов импульсных блоков питания, то для примера рассчитаем простейшую схему, на основе которой можно создать импульсный блок питания.
Зададим следующие параметры для расчёта: частота прохождения импульсов F = 50 кГц, скважность импульсов Q = 0,3, амплитуда выходных импульсов Um = 5 В, сопротивление нагрузки RH = 25 Ом, напряжение питания схемы ЕК = 310 В (выпрямленное сетевое напряжение).
1.Первым этапом расчёта является определение типа транзистора, как основного элемента схемы. Транзистор выбирается по следующим параметрам: максимально допустимое напряжение UCBmax, максимально допустимый ток коллектора ICmax и предельная частота fh21e.
где nH — коэффициент трансформации из коллекторной обмотки в обмотку нагрузки.
Примем IC = 0,02 А
Данным параметрам удовлетворяет транзистор MJE13001
со следующими характеристиками:
- тип транзистора: NPN
; - UCBmax = 600 В;
- UBЕmax = 7 В;
- ICmax = 0,2 А;
- ICBO = 10 мкА;
- fh21e = 8 МГц;
- h21e = 5…30;
- rb ≈ 200 Ом.
2.Определим величину сопротивления R1
Примем значение R1 = 390 Ом.
3.Рассчитаем параметры импульсного трансформатора. Коэффициент трансформации для выходной обмотки nH
Управляемый блокинг генератор схема
_________________ Мудрость(Опыт и выдержка) приходит с годами. Все Ваши беды и проблемы, от недостатка знаний. Умный и у дурака научится, а дураку и .. Алберт Ейнштейн не поможет и ВВП не спасет. и МЧС опаздает и таки теперь Дураки и Толерасты умирают по пятницам!
_________________ Кто замазался в МЯВЕ, как отмываться будете? «Йухан, Тор! Вы — на бой!» (Reverse)
JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!
Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc
Есть схема для питания светодиода от одной батарейки:
Подскажите, можно ли так сделать питание от двух батареек последовательно? Чтобы уменьшить ток потребления от одной батарейки (так батарейка дольше прослужит). Дело в том что напряжение светодиоду достаточно примерно 2,8 вольта, а новые батарейки дают 3,2 v и разряжаются до 1,5 v. Будет ли в этом случае работать блокинг-генератор и насколько эффективно?
_________________ () Паяю только медным жалом. _/_ . . А не вступить ли мне в секту любителей «TS100»?
Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
Я делал по вот такой схеме.
Транзистор использовал германиевый — ГТ311И. Его измеренный коэффициент усиления (h21э) около 40. Светодиоды начинают светиться при 0.28 В, потребляемый от батарейки ток при этом = 3 мА. 0.28 В — 3.00 мА 0.50 В — 17.9 мА. 0.75 В — 31.0 мА. 1.00 В — 42.3 мА. 1.25 В — 51.7 мА. 1.50 В — 59.2 мА. Пробовал КТ315Б, но ему нужно для начала работы около 0.4-0.45 В. Германиевый транзистор в этом плане более подходящий.
В испытаниях вместо батарейки использовался блок питания. Резистор 680 Ом. Определил сопротивление методом подбора — установил 1.5 В на БП и уменьшал сопротивление, до срыва генерации. После этого немного добавил сопротивления до устойчивой работы. Получилась максимальная яркость при минимальном для нее потреблении энергии.
Трансформатор намотал на первом попавшемся ферритовом кольце (примерно 21x12x6, точно не замерил до намотки) проводом 0.35 мм, в два провода, виток к витку до заполнения (
50 витков первичная и столько же вторичная обмотки). L1 = 1477 мкГн. L2 = 1477 мкГн.
Добавил еще диод Шоттки (SS24 — Multicomp Диод Шоттки, 2 А, 40 В, SMB) и конденсатор 470 мкФх35В (см. на схеме).
Поставил батарейку «GP Super» с U = 1.12 В, ток КЗ не помню, около 0.3-0.4 А. Проработал фонарик 62 часа на этой, уже дохленькой, батарейке. В конце напряжение на батарейке было U = 0.249 В. Еле тлеет. Очень неплохо. Я его выключил, напряжение на батарейке начало повышаться (до 0.26-0.27 В), включил — он загорелся и напряжение сразу стало падать. Даже на 0.25 В он уверенно зажигается. Отлично!
Приглашаем всех желающих 13 октября 2022 г. посетить вебинар, посвященный искусственному интеллекту, машинному обучению и решениям для их реализации от Microchip. Современные среды для глубинного обучения нейронных сетей позволяют без детального изучения предмета развернуть искусственную нейронную сеть (ANN) не только на производительных микропроцессорах и ПЛИС, но и на 32-битных микроконтроллерах. А благодаря широкому портфолио Microchip, включающему в себя диапазон компонентов от микроконтроллеров и датчиков до ПЛИС, средств скоростной передачи и хранения информации, возможно решить весь спектр задач, возникающий при обучении, верификации и развёртывании модели ANN.
Виды цифровых генераторов
В данной статье я хочу сделать краткий обзор разных методов генерации частоты, но сначала я расскажу пару слов о себе. Это моя первая статья. Я аспирант Московского Энергетического Института. Обучался по специальности «Метрология стандартизация и сертификация». Эта статья писалась в первую очередь для себя, с целью разобраться какие есть доступные методы генерации сигнала, и так как я не нашел выжимку информации в одном месте, то решил сделать ее сам и опубликовать ее здесь. Все это делается в самообразовательных целях. С радостью приму в личной почте замечания по тексту, по сути и по стилю, и отвечу на все интересующие вас вопросы в комментариях. Статью пробовал писать максимально доступным и простым языком. Итак виды, а скорее даже методы генерации синусоидального (и вообще аналогового) сигнала. Первый из них называется прямой цифровой синтез, или Direct Digital Synthesis.
Синусоидальный сигнал есть, по сути, решение уравнения Y= Sin(X), при линейно изменяющемся значении аргумента X. Для получения цифрового сигнала из микроконтроллера нам необходимо подать значения функции на цифроаналоговый преобразователь (ЦАП). Это значит, что для получения синусоидального сигнала, нам необходимо знать значения функции Y при каждом значении аргумента X (по сути X определяет значение фазы сигнала). Можно вычислять все значения функции прямо в микроконтроллере, но для обеспечения высокой точности вычисляемых значений необходим высокопроизводительный процессор, или модуль для работы с плавающей точкой. Вычисление значений в микроконтроллере может занять продолжительное время, поэтому для обеспечения быстроты вычисления берут готовые значения функции и загружают их в память. Для обеспечения плавности выходного сигнала, для уменьшения погрешности связанной с нелинейностью характеристики цифроаналогового преобразователя, необходимо как можно большее количество значений синуса. Таким образом, в памяти будут готовые отсчеты синуса. Для того чтобы эти отсчеты превратились в синус, их нужно каким-то образом растянуть по времени, чтобы каждый отсчет подавался на ЦАП через определенный промежуток времени после предыдущего. Для этого необходим генератор опорной частоты. Такой генератор будет выдавать импульсы постоянной скважности. Эти импульсы, в простейшем случае, поступают на счетчик, а счетчик в свою очередь выдает на выходе последовательность возрастающих кодов. Код на выходе счетчика будет указывать на адрес очередного отсчета в памяти (ПЗУ). ПЗУ соответственно кодам выдает на своем выходе значения функции, содержащиеся в памяти по этим адресам, которые передаются в ЦАП и на выходе ЦАПа будет синус с идеальной частотой. Частота синуса будет соответствовать частоте тактового генератора. Для обеспечения перестройки по частоте нужно каким-либо образом регулировать частоту опорного генератора. В простейшем случае между счетчиком и генератором ставят делитель частоты. Такой делитель позволяет перестаивать частоту в определенных пределах. Предел перестройки зависит от разрядности сумматора и частоты опорного генератора. Перестройка в таком случае будет возможна только на определенные значения, так как деление возможно только на числа, кратные 2.
Простейшая схема такого генератора показана на рисунке 1. В его состав входит генератор опорной частоты (G). Делитель, в который загружается код частоты (коэффициент деления), счетчик (СТ), ПЗУ, ЦАП и фильтр. Фильтр в данном случае необходим для того, чтобы сглаживать цифровой сигнал на выходе. ЦАП – цифровое устройство, которое выдает только определенный уровень сигнала. Чем меньше частота дискретизации, тем более ярко выражена ступенчатая характеристика выходного сигнала. Для того чтобы убрать погрешность, вносимую частотой дискретизации, на выходе применяется фильтр сигналов. В простейшем случае, это простая RC-цепочка, но необходимо учитывать скоростные характеристики ЦАП, так как на высоких частотах может отфильтровываться полезный сигнал.
Здесь рассмотрена самая простая схема DDS. Многие элементы в ней можно заменить и доработать. Например, если заменить счетчик на более сложное устройство, т.н. аккумулятор фазы, то у нас появятся больше возможностей, таких как перестройка по частоте без фазового сдвига или, например, возможность использовать четверть периода значений синуса, вместо полного периода, но в рамках данной статьи такие усложнения рассматриваться не будут.
Сейчас DDS выполняются как отдельные микросхемы. В такую микросхему достаточно загрузить параметры нужного сигнала и подключить генератор опорной частоты, а на выходе мы получим цифровую синусоиду, которую достаточно лишь отфильтровать с заданными параметрами. Такие генераторы позволяют получать частоту до 1.4 ГГц. У них в свою очередь есть один недостаток. Генераторы прямого цифрового синтеза чаще всего используются именно как генераторы частоты, поэтому амплитуда выходного сигнала не стабильна.
Другим способом генерации сигнала синусоидальной формы с помощью контроллера, является метод ШИМ + пассивный RC фильтр. ШИМ – широтно-импульсная модуляция. Она позволяет, регулируя скважность импульсов, получать нужную постоянную амплитуду сигнала. Чем шире импульс, тем выше выходное напряжение на фильтре. Напряжение можно менять в пределах от нуля до напряжения питания. Таким образом, если задать определенную программу для регулирования скважности импульсов, то на выходе можно получить сигнал любой формы, в том числе синусоидальный. В самом простом случае схема показана на рисунке 2.
Такой генератор является дешевым, и самое главное наиболее легко реализуемым способом преобразования цифрового сигнала в аналоговый с помощью микроконтроллера. Он не требует специальных микросхем или каких-либо сложных схемотехнических решений. Единственное, что необходимо при создании такого генератора, это расчет выходного фильтра на заданную частоту среза, чтобы он не срезал полезный сигнал. Правда, достигнуть высоких метрологических характеристик на таком генераторе невозможно, так как трудно добиться низкого коэффициента гармонических искажений. Низкий уровень гармонических искажений можно достичь с помощью еще одного варианта генератора.
Третий вариант генератора основывается на схеме, которая называется «мост Вина». Суть этой схемы в том, что используется усилитель с двумя RC-цепочками в обратной связи. Одной последовательной и одно параллельной. Схема такого генератора представлена на рисунке 3. Для данной схемы необходимо учесть то, что элементы в RC-цепочке должны быть строго одинаковыми. Иначе схема не будет стабильной. Для уменьшения этих эффектов применяют разные хитрости, например автоматическое управление усилением и другие хитрости. В простейшем случае автоматическое управление осуществляется каким-либо нелинейным элементом, например лампочкой. Но перестройка такого генератора по частоте затруднена. Нужно использовать переменные конденсаторы, что усложняет схему еще на порядок. Такой метод хорош, но в основном для генерации какой-либо определенной частоты, либо частоты с малым диапазоном регулировки.
Существуют разные варианты и модификации представленных выше схем. Кроме этих схем существуют аналоговые решения, которые не были здесь описаны из-за несоответствия тематике статьи. В заключении хочу сказать, что каждая схема должна выбираться и прорабатываться возможная ее реализация в зависимости от задачи, которую необходимо выполнить. Передо мной стоит задача создать прецизионный генератор синусоидального сигнала, который может одновременно выдавать высокостабильный синусоидальный сигнал и добавлять в сигнал гармоники более высокого порядка. Для выполнения этой задачи наилучшим выходом будет расчет значений функции синуса непосредственно в микроконтроллере с передачей значений на ЦАП. Такая реализация позволит мне учесть недостатки каждой схемы и проработать техническую реализацию, необходимую конкретно для моей задачи. Можно одновременно сделать стабильную амплитуду, убрать гармонические искажения, вносимые особенностью схемы и получить довольно стабильный генератор. И конечные погрешности будут зависеть только от того, какие элементы будут выбраны, и какая степень упрощения алгоритма взята. Таким образом, при неизменности основной структуры, можно получить гибкое решение определенного класса задач.
Если вас интересует какой-либо материал на схожую тему, или вообще что-то из сферы измерительных приборов и их проектирования, то я бы мог попробовать написать какой-либо материал, чтобы осветить ваш вопрос в более простом и понятном ключе
Источники:
1. DDS: прямой цифровой синтез частоты. Автор: Ридико Л.И. [Электронный ресурс]: Статья – https://www.digit-el.com/files/articles/dds.pdf — 25.12.2013
2. Генератор тестового сигнала с низким уровнем гармоник на мосте Вина [Электронный ресурс]: Статья – https://myelectrons.ru/wien-bridge-oscillator-low-thd/ — 26.12.2013
Управляемый блокинг генератор схема
Блокинг-генератор представляет собой однокаскадный релаксационный генератор кратковременных импульсов с сильной индуктивной положительной обратной связью, создаваемой импульсным трансформатором. Вырабатываемые блокинг-генератором импульсы имеют большую крутизну фронта и среза и по форме близки к прямоугольным. Длительность импульсов может быть в пределах от нескольких десятков нс до нескольких сотен мкс. Обычно блокинг-генератор работает в режиме большой скважности, т. е. длительность импульсов много меньше периода их повторения. Скважность может быть от нескольких сотен до десятков тысяч. Транзистор, на котором собран блокинг-генератор, открывается только на время генерирования импульса, а остальное время закрыт. Поэтому при большой скважности время, в течении которого транзистор открыт, много меньше времени, в течении которого он закрыт. Тепловой режим транзистора зависит от средней мощности, рассеиваемой на коллекторе. Благодаря большой скважности в блокинг-генераторе можно получить очень большую мощность во время импульсов малой и средней мощности.
При большой скважности блокинг-генератор работает весьма экономично, так как транзистор потребляет энергию от источника питания только в течении небольшого времени формирования импульса. Так же, как и мультивибратор, блокинг-генератор может работать в автоколебательном, ждущем режиме и режиме синхронизации.
Блокинг-генераторы могут быть собраны на транзисторах, включенных по схеме с ОЭ или по схеме с ОБ. Схему с ОЭ применяют чаще, так как она позволяет получить лучшую форму генерируемых импульсов (меньшую длительность фронта), хотя схема с ОБ более стабильна по отношению к изменению параметров транзистора.
Схема блокинг-генератора показана на рисунке 3.3.1
Рисунок 3.3.1 Блокинг-генератор
Работу блокинг-генератора можно разделить на две стадии. В первой стадии, занимающей большую часть периода колебаний, транзистор закрыт, а во второй — транзистор открыт и происходит формирование импульса. Закрытое состояние транзистора в первой стадии поддерживается напряжением на кондере С1, заряженным током базы во время генерации предыдущего импульса. В первой стадии кондер медленно разряжается через большое сопротивление резика R1, создавая близкий к нулевому потенциал на базе транзистора VT1 и он остается закрытым.
Когда напряжение на базе достигнет порога открывания транзистора, он открывается и через коллекторную обмотку I трансформатора Т начинает протекать ток. При этом в базовой обмотке II индуктируется напряжение, полярность которого должна быть такой, чтобы оно создавало положительный потенциал на базе. Если обмотки I и II включены неправильно, то блокинг-генератор не будет генерировать. Значится, концы одной из обмоток, неважно какой, необходимо поменять местами.
Положительное напряжение, возникшее в базовой обмотке, приведет к дальнейшему увеличению коллекторного тока и тем самым — к дальнейшему увеличению положительного напряжения на базе и т. д. Развивается лавинообразный процесс увеличения коллекторного тока и напряжения на базе. При увеличении коллекторного тока происходит резкое падение напряжения на коллекторе.
Генераторы импульсов (инжекционно-полевые транзисторы, негаваристоры)
Генераторы импульсов на аналогах инжекционно-полевых транзисторов (ИПТ), известных с 1973 г., одни из самых простых генераторов, работающих в широком диапазоне питающих напряжений [Рл 4/97-33].
На рис. 8.1, 8.2 приведены схемы аналогов ИПТ п- и р-структуры, выполненные на основе совместно включенных полевого и биполярного транзисторов [Рл 4/97-33].
Рис. 8.1
Рис. 8.2
При малом смещении на базе аналога ИПТ коллекторный ток биполярного транзистора невелик. При повышении напряжения на базе происходит скачкообразное изменение состояния ИПТ. Сопротивление перехода база-эмиттер аналога ИПТ из непроводящего состояния переходит в проводящее, и коллекторный ток резко возрастает. Устройство может быть преобразовано в релаксационный генератор импульсов (РГИ), если параллельно переходу эмиттер — база аналога ИПТ включить конденсатор.
На рис, 8.3 приведена схема управляемого РГИ звуковых частот на аналоге ИПТ. В качестве времязадающего конденсатора генератора использован пьезокерамический зуммер. Изменение сопротивления в цепи базы ИПТ от 24 до 510 кОм при ипит=9 В вызывает изменение частоты генерации от 1100 до 200 Гц, при этом потребляемый устройством ток уменьшается с 240 до 20 мкА. Генератор работает в диапазоне питающих напряжений от 3 до 10 В,
Рис. 8.3
Рис. 8.4
Менее экономичен генератор по схеме на рис. 8.4, который может работать в диапазоне напряжений питания от 1 до 10 Б. К управляющему электроду аналога ИПТ подключена времязадающая цепь (R1, С1). В качестве нагрузки РГИ использован телефонный капсюль ТК-67 (ТМ-2В). Частота генерации РГИ составляет 2,7 кГц при ипит=9 6, а потребляемый ток — 10 мА.
На основе аналога ИПТ могут быть выполнены и генераторы инфранизких частот, например, экономичный генератор вспышек света (рис. 8.5). При указанных на схеме номиналах частота генерации составляет 2 Гц. Поскольку генерируемые импульсы довольно короткие, ток, потребляемый устройством, невелик и колеблется в пределах от 20 до 120 мкА. Максимальный ток через
светодиод ограничен высоким внутренним сопротивлением биполярного транзистора, входящего в состав аналога ИПТ. Для снижения начальной амплитуды импульса тока через светодиод и транзистор в эту цепь можно подключить резистор сопротивлением 200. ..620 Ом.
Рис. 8.5
Рис. 8.6
В связи с высокой экономичностью и предельной простотой РГИ целесообразно использовать их в радиоэлектронной аппаратуре для индикации включенного состояния (подачи напряжения питания).
На рис. 8.6 приведена схема генератора импульсов звукового диапазона. При R1 =910 Ом, С1=1 мкФ и изменении напряжения питания от 2 до 10 Б частота генерации меняется от 5 до 500 Гц с увеличением потребляемого тока от 3 до 6 мА.
Генератор импульсов, представленный на рис. 8.7, отличается подключением времязадающего конденсатора. Генератор вырабатывает достаточно стабильные колебания синусоидальной формы: частота генерации меняется от 644 до 639 Гц при изменения напряжения питания от 3 до 10 Б, а потребляемый ток — от 4 до 5,5 мА.
Рис. 8.7
Рис. 8.8
Рис. 8.9
На рис. 8.8 и 8.9 показана возможность использования генераторов на основе ИПТ в качестве портативного маломощного преобразователя напряжения. Такие устройства можно использовать для подачи повышенных напряжений на управляемые полупроводниковые конденсаторы — варикапы. Преобразователь (рис. 8.8) работает при 1)пит=3…10 В (верхнее значение напряжения определяется типом используемых полупроводниковых приборов) и позволяет получить 11вых =2(11пит-1).
Преобразователь (рис. 8.9) нагружен на высокочастотный колебательный контур. При использовании катушки индуктивности от фильтра промежуточной частоты радиоприемника «ВЭФ» (индуктивность 260 мкГч) генератор работает на частоте 140…200 кГц в диапазоне напряжения питания от 1,5 до 10 В. Этот генератор можно использовать для создания портативного металлоискателя, см., например, рис. 21.1, 21.6.
При подборе сопротивления в цепи базы (рис. 8.9) изменяется потребляемый генератором ток, выходное напряжение и форма генерируемого сигнала (до синусоидального). При 11пит=0,7 В на выходе устройства было получено напряжение 5 В (R1=750 Ом, 1ПОТР=20 мА). С повышением напряжения питания до 1 В выходное напряжение достигает 20 В, а при 2 В — доходит до 27 В (потребляемый ток — 50 мА). Экономичность преобразователя растет с увеличением сопротивления в цепи базы.
На рис. 8.10 и 8.11 приведены схемы генераторов на аналогах ИПТ р-структуры. Как следует из сопоставления схем (см., например, рис. 8.9 и 8.10 и рис. 8.4 и 8.11), способы включения аналогов ИПТ п- и р-структур тождественны способам подключения биполярных транзисторов п-р-п и р-п-р типов (смена полярности источника питания). При изменении емкости конденсатора (рис. 8.11) от нуля (емкость монтажа и полупроводниковых переходов) до 0,33 мкФ частота генерации изменяется от 3,5 кГц до 200 Гц.
Рис. 8.10
Рис. 8.11
Устройство (рис. 8.11) может быть использовано в качестве широкодиапазонного генератора импульсов, простейшего электромузыкального инструмента, измерителя емкости конденсаторов, контроля изменения емкости конденсаторных датчиков, варикапов и т.д.
Устройство звукосветовой импульсной сигнализации — би-пер — предназначено для индикации включения узлов и блоков радиоэлектронной аппаратуры. Бипер (рис. 8.12) выполнен на аналоге инжекционно-полевого транзистора (транзисторы VT1, VT2) [Рл 2/01-18]. Бипер генерирует при включении привлекающие внимание короткие синхронные звуковые и световые сигналы. Величина резистора R1 определяет длительность звуковой посылки; R2 — паузы между ними. Конденсатор С1 является элементом времязадающей цепи; С2 — обеспечивает характерную «окраску» генерируемого звукового сигнала. В качестве зву-коизлучателя использован телефонный капсюль ТК-67 или микротелефон ТМ-2В. Средний ток, потребляемый устройством, составляет 1,5 мА при напряжении питания 6… 15 6. Если из схемы исключить светодиодный индикатор (HL1), бипер начнет работать при напряжении питания от 4 В.
Рис. 8.12
Все рассматриваемые в этой главе устройства выполнены на так незываемых негаваристорах — приборах, имеющих участок отрицательного динамического сопротивления на вольт-амперной характеристике. Если приведенные на рис. 8.1 — 8.12 схемы были реализованы на аналогах ИПТ (S-образная ВАХ), то показанные далее схемы генераторов (рис. 8.13 — 8.17) демонстрируют возможность использования другого рода структур (негаваристоров) для генерации электрических колебаний. Эти структуры (сочетание элементов, в них входящих) могут иметь принципиально иное построение, однако предназначены они для выполнения близких задач и обладают общим свойством: S-или N-образным видом ВАХ.
Звуковой генератор (рис. 8.13) собран на аналоге лямбда-диода и имеет в качестве нагрузки низкочастотный колебательный контур, состоящий из электромагнитного капсюля ТМ-2В (индуктивность) и конденсатора С1. Генер?.тер вырабатывает колебания, по форме близкие к синусоидальным, и потребляет ток до 0,4 мА при напряжении питания 1,5…2,5 В. Если последовательно с нагрузкой генератора включить дополнительно высокочастотный колебательный контур, устройство превратится в генератор высокочастотных сигналов с возможностью модуляции низкочастотными колебаниями.
Рис. 8.13
Рис. 8.14
Генераторы (рис. 8.14, 8.15) очень близки по построению. Для возбуждения этих генераторов (задания рабочей точки, в которой начинается процесс генерации) потребуется подбор рези-стивных элементов: R1 (рис. 8.14) и R2 (рис. 8.15).
Генератор импульсов (рис. 8.16) выполнен по схеме симметричного мультивибратора, но транзисторы включены инверсно (в «неправильной» полярности питающих напряжений) и с «оборванной» по постоянному току базой. Несмотря на столь экзотичное и необщепринятое включение, повреждения полупроводниковых элементов не происходит. Мощность, рассеиваемая на полупроводниковых переходах, крайне мала, поскольку в цепь нагрузки транзисторов включены резисторы с высоким сопротивлением. В таком режиме обычно работают биполярные лавинные транзисторы, см., например, схемы прак тического использования подобных генераторов (рис. 20.6, 20.7)
Рис. 8.15
Рис. 8.16
Рис. 8.17
На рис. 8.17 показана схема генератора импульсов, выполненная на тиристоре (Б.Е. Алгинин). Генератор работает в области звуковых частот (не выше нескольких кГц) и имеет достаточно высокую выходную мощность. Тиристор можно заменить его аналогом (рис. 2.2).
Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год
TV Service
Ремонт ИП. Разделение на блокинг-генратор и схему управления Источник питания на дискретных элементах (транзисторах) сконструированы схематично из двух частей: 1) автогенератор (блокинг-генератор), 2) устройство управления работой автогенератора (схема управления, ключ КУ и R огр. ). M50.jpg Автогенератор обеспечивает выработку импульсных напряжений на ТПИ, а устройство контролирует выходные напряжения источника питания и регулирует работу автогенератора при их изменении. Автогенератор обычно выполнен на: а) мощном выходном транзисторе, б) обмотке ТПИ работающей в режиме ПОС (Положительная обратная связь), в)сопротивлении Rсв и ёмкости Cсв, последовательно включенных в цепь между обмоткой ПОС и базой транзистора г) сопротивлении смещения Rсм, включенном между Uпит+ (выпрямленное сетевое напряжение) и базой транзистора. д) диода, обеспечивающего постоянство отпирающего тока базы транзистора и шунтирующего RC цепочку в прямом направлении. Обмотка ПОС, Rсв и Cсв формируют импульс определённой формы на базе транзистора. Диод формирует положительное смещение на базе транзистора, тем самым обеспечивая необходимый размах на обмотках ТПИ. Rсм служит для первичного запуска автогенератора.
Идея методики ремонта . Отключить блокинг генератор от схемы управления и части нагрузок на вторичных обмотках блока питания, проверить его работоспособность, если нужно отремонтировать, а затем в несколько приёмов подключать схему управления, нагрузки и т.д. при этом проверять работоспособность и при необходимости ремонтировать. Но если просто включить автогенератор, то ИП сразу же пойдёт в «разнос» и ключевой транзистор выйдет из строя. Также при наличие дефектов в самом генераторе ключевой транзистор также может выйти из строя. Поэтому проверять нужно в двух режимах. Отключаются во вторичке ИП все нагрузки, за исключением диода и ёмкости по B+ и параллельной этой ёмкости подключается лампа обычно 220 вольт 60 ватт. Затем отключается схема управления и её питание и в разрыв между сетевым конденсатором и обмоткой ТПИ подключается лампа 220вольт 100ватт. M50_2-2.jpg Включается ИП. Обе лампы должны загореться и ИП не издавать посторонних звуков. Если не загорается лампа на B+ или ИП трещит, верещит и тп, то блокинг-генератор нужно ремонтировать. Если нормально, то восстанавливается место соединения конденсатор-ТПИ и лампа 100 ватт впаивается вместо предохранителя. Лампы желательно подбирать таким образом, чтобы на В+ напряжение было как можно ближе к оптимальному. На сеть комплект ламп 200ватт, 150ватт, 100 ватт, на нагрузку 100ватт, 60 ватт, 40 ватт. Если неизвестно какие ламы оптимальны для данного блока питания то лучше начинать со 100 ватт -сеть и 100 ватт-нагрузка. Увеличение мощности ламы в цепи сети-увеличивается В+, увеличение мощности в нагрузке-уменьшается. После проверки работоспособности блокинг-генератора во втором режиме подключаются последовательно схема управления, нагрузки и т.д. при этом проверяется работоспособность и при необходимости ремонтируется.
Например, методика ремонта ИП шасси M50.
M50_PS.jpg Напряжения на рабочем ИП: B+112вольт Q801 К 5,1в, Э 9,7в, Б 9,2в, Q802 К 0,0в, Э 2,0в, Б ?, Q803 К 1,6в, Э 0,2в, Б 0,4в.
Начинается ремонт с проверки работоспособности автогенератора. Отпаиваются с одного конца следующие детали: R831, R832, R831A, L804 (вторичка ИП)D805,D807, C810 (устройство управления автогенератором). Впаиваются лампа 60 ватт параллельно С827 (В+) и между С806 и 3 ногой ТПИ 100ватт.
M50_PS_2-2.jpg Включаем ИП в сеть. ИП должен работать без посторонних звуков (верещание, свист и тп). На В+ 64 вольта. Если нет запуска или посторонние звуки издаёт ТПИ , то блокинг-генератор нужно ремонтировать. Если нормально, то восстанавливается место соединения сетевой конденсатор-ТПИ и лампа 100 ватт впаивается вместо предохранителя. Проверяется работа блокинг-генератора в этом режиме. Должно быть на В+ 112 вольта на сетевом конденсаторе 82 вольт. Впаиваются обратно D805 и D807. Должны быть следующие напряжение Q801 К 10,0в, Э 10,0в, Б 9,4в, Q802, К 0,6в, Э 3,1в, Б 2,8в, Q803 К 3,3в, Э 0,6в, Б 0,6в. Если есть большие отклонения по напряжениям то ремонтируем устройство управления. Если норма, то впаивается обратно С810, отпаивается лампа между сетевым конденсатором и ТПИ и восстанавливается в этом месте соединение. После включение напряжение на B+ должно быть +112вольт. При необходимости подрегулировать VR801. Затем отпаивается лампа с В+ и припаиваются обратно R831, R832, R831A, L804. И производится проверка работы телевизора, при необходимости ремонт других блоков.
Благодарю за помощь в подготовке материала viktor_ramb и Admin .