Классы защиты ограничителей
В области напряжения ниже 1000 В ограничители делятся на 4 класса, обозначенные буквами алфавита: A, B, C и D.
- Ограничитель класса А не используется в бытовых установках, а применяется для защиты линий электропередач.
- Протектор класса B используется для защиты от высоковольтовых скачков напряжения, например, вызванных ударом молнии к линии электропередач.
- Ограничитель класса C предназначен для защиты от перенапряжений со слегка более низкими значениями напряжения в сети. Защитные устройства класса B и C обычно устанавливаются в бытовых распределительных устройствах.
- Протектор класса D используется для прямой защиты выбранных электроустройств, чувствительных к импульсным помехам и всплескам в 220 В сети. Он монтируется в распределительном щите, за розеткой в электрической коробке или непосредственно в защищаемом устройстве.
Каждое устройство защиты ограничивает электрический потенциал только определенным уровнем. Чем ближе оборудование к А классу – тем более высокая мощность. Например:
- Класс A уменьшит уровень напряжения до 6 кВ,
- Класс B уменьшит уровень напряжения до 2,5 кВ,
- Класс C уменьшит уровень напряжения до 1,5 кВ,
- Класс D уменьшит уровень напряжения до 0,8 кВ.
Поэтому ограничители отдельных классов следует применять каскадно, постепенно снижая уровень предельного напряжения. То есть если одно распределительное устройство в доме – используем защитные устройства класса как B, так и C (есть сразу 2 в 1 защитные устройства B + C).
Если здание многоэтажное, в главном распределительном щитке должны использоваться защитные устройства класса B, а ограничители класса C следует использовать в распределительных щитках в отдельных квартирах.
Если подключенное к розетке устройство чувствительно к скачкам напряжения, можем также использовать ограничители класса D. К ограничителям класса А у нас нет доступа, это забота энергетической компании.
Поскольку рассматривать будем домашнюю проводку, статья будет посвящена защитным устройствам класса B и класса C (типа I и II).
Классификация устройств
Стандартом предусмотрена классификация устройств по следующим параметрам:
- числу вводов;
- по способу осуществления защитных функций;
- по месту расположения;
- по способу монтажа;
- по набору защитных функций;
- по степени защиты наружной оболочки;
- по роду тока питания.
Так выглядят устройства для защиты от грозовых и коммутационных перенапряжений.
Установка ограничителя перенапряжений
Стандартный разрядник B или C (возможно, B + C) состоит из двух компонентов:
- Основа ограничителя
- Сменная вставка с защитным элементом
Основа
Основание защитного устройства установлено на DIN-рейке TS35. Оно имеет два хомута. Подключите провод фазы ( L ) или нейтральный ( N ) на котором может появиться слишком большой электрический потенциал. С другой стороны подсоедините защитный провод PE, который подключен к защитной линии распределительного устройства.
Защитный проводник должен иметь минимальное поперечное сечение 4 мм2, но не повредит взять ещё больше. В конце концов есть вероятность, что будет течь очень высокий ток.
Есть 3 контакта под терминалом PE. По стандарту в комплект входит вилка, которая вставлена в нужное место и позволяет соединять провода. Благодаря этим зажимам есть возможность удаленного уведомления в случае повреждения вставки или ее перегорания. Этот сигнал может быть подключен, например, к входу блока управления сигнализацией (смотрите схему). В этом случае панель управления будет проинформирована о повреждении вставки размыканием электрической цепи между красным и зеленым проводами.
Вставка
Вставка содержит все наиболее важные элементы, благодаря которым защитник правильно функционирует:
- Класс B (тип I) – основным элементом является просто искровой промежуток.
- Класс C (тип II) – здесь деталь варистор является основным элементом.
Как работает защитник от перенапряжений
Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).
Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны – защитный провод.
Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.
Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.
В защитных устройствах класса B основным элементом является искровой промежуток. При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи. Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге. Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.
Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние – то есть разрывает цепь.
Полезное: Микроволновый датчик движения: схема и подключение к Ардуино
Ограничитель класса C имеет внутри варистор. Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале. Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.
Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.
Главным в ограничителях перенапряжений, независимо от используемого класса, является установка заземления с очень хорошими параметрами, то есть с очень низким электрическим сопротивлением. Если это сопротивление слишком велико – ток перенапряжения (вызванный ударом молнии) вместо протектора может протекать через электрическую систему и оставить на пути сгоревшее оборудование, включенное в данный момент к розеткам 220 вольт.
Конструкция ОПН
Ограничители типов КР, РТ и РВ представляют собой высоковольтные аппараты, состоящие из последовательно соединенных варисторов, размещенных внутри изоляционного корпуса. Безопасное нахождение ОПН под напряжением обеспечивает высоко-нелинейная вольтамперная характеристика варисторов. При изготовлении ограничителей классов напряжения 3-10кВ, колонка резисторов находится между металлическими электродами и запрессовывается в оболочку из особого атмосфероустойчивого полимера. Ограничители типа РК состоят из блоков варисторов соединенных последовательно, находящихся внутри покрышки. Покрышка состоит из стеклопластикового цилиндра.
Схема подключения ограничителя к сети
Как подключить ограничитель к домашнему щитку? Начнем с основ. У нас есть однофазная сеть и одномодульный разрядник. Мы хотим защитить им фазовый провод. Тип сети – TN-S.
Подключаем фазный проводник питания непосредственно к разряднику и подключаем разрядник с другой стороны к клеммной колодке PE.
Но в этом домашнем коммутаторе больше ничего, кроме импульсного ограничителя. Добавим недостающие элементы.
Как видите, установка ограничителя перенапряжений не влияет на дальнейшую организацию компонентов в домашнем коммутационном щитке. Соединение устройства остаточного тока и автоматических выключателей осуществляется так же.
Вообще в распределительных устройствах разрядники перенапряжения класса B, C или B + C устанавливаются перед автоматическим выключателем (или автоматическими выключателями) и предохранителями токовой защиты. Но ограничитель является первым элементом, лежащим в основе защиты дома или квартиры.
Что это такое?
ОПН, как можно понять из названия, являются высоковольтной аппаратурой, которая предназначена для защиты электрических приборов от отклонений напряжения в сторону значительно превышающей номинальные показатели. Как правило, эти сильные отклонения носят импульсный характер, поэтому такие устройства называются ограничителями импульсных напряжений (ОИН).
Ранее для этой цели использовали вентильные разрядники – устройства, которые были основаны на технологии искрового промежутка. В настоящее время технологии значительно улучшились, и теперь успешно применяется ограничитель перенапряжений, который тоже можно назвать разрядником. Только в нем уже отсутствует искровой промежуток.
Чтобы более точно представить всю картину, рассмотрим, какие могут быть причины таких перепадов напряжения.
Трехфазная установка
В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:
- 3-фазные провода
- 1 нейтральный провод
Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.
Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).
Параметры ограничителя перенапряжений
Перед тем как пойти в магазин и купить это устройство, нужно знать следующее:
- Количество модулей (терминалов) – зависит от типа вашей сети. 1 модуль можно купить когда есть однофазная система TN-C. 3 модуля, когда установка находится в сети TN-C трехфазной и 4 модуля когда сеть является трехфазной в TN-S или TT.
- Класс (тип) – можно выбирать между классами B, C или B + C. Если не уверены что перед вашей квартирой используется ограничитель типа B, стоит выбрать решение B + C. В противном случае ограничителя типа C будет достаточно.
- Номинальное напряжение, в котором работает ограничитель.
- Uc – рабочее напряжение протектора, то есть максимальный уровень напряжения который приведет к срабатыванию.
- In – номинальный ток ограничителя, то есть какой ток в случае короткого замыкания может протекать через разрядник.
- Imax – ток, который разрядник способен принимать во время атмосферного разряда. Обратите внимание, что оба значения (In = 30 000A и Imax = 60 000A) будут относительно большими по отношению к току при нормальной работе приборов в доме.
- Up – напряжение до которого уменьшается в случае разрыва. Например если потенциал достигает напряжения 10 000 В в случае всплеска – итоговое значение снижается до 150.
Технические характеристики ОПН
Таблица 1 – Технические характеристики ограничителей типа ОПН 6 – 10кВ (ОПН-КР/TEL–X/X УХЛ1(2)10/11.5)
Наименование параметров | 6/6.0 | 6/6.9 | 10/10.5 | 10/11.5 | 10/12 |
Класс напряжения сети, кВ | 6 | 6 | 10 | 10 | 10 |
Наибольшее длительно допустимое рабочее напряжение Uнд; кВ | 6.0 | 6.9 | 10.5 | 11.5 | 12.0 |
Номинальный разрядный ток 8/20 мкс, Iн; кА | 10 | 10 | 10 | 10 | 10 |
Остаточное напряжение Uост; кВ; не более: | |||||
– при коммутационном импульсе тока | |||||
125 А 30/60мкс | 14.3 | 16.2 | 24.8 | 26.9 | 29.7 |
250 А 30/60мкс | 14.6 | 16.5 | 25.4 | 27.6 | 30.4 |
500 А 30/60мкс | 15.0 | 17.5 | 26.1 | 28.3 | 31.3 |
– при грозовом импульсе тока | |||||
5000 А, 8/20мкс | 17.7 | 20.0 | 30.7 | 33.3 | 36.9 |
10000 А, 8/20мкс | 19.0 | 21.5 | 33.0 | 35.8 | 39.6 |
20000 А, 8/20мкс | 21.2 | 24.0 | 36.7 | 39.9 | 44.1 |
при крутом импульсе тока 10000А, 1/10мкс | 21.3 | 24.1 | 36.9 | 40.1 | 44.3 |
Емкостный ток проводимости Iс, мА, не более: | |||||
амплитуда | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
действующее значение | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 |
Удельная энергия ОПН, кДж/кВ Uнд, не менее | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 |
Максимальная амплитуда импульса тока 4/10мкс, кА | 100 | 100 | 100 | 100 | 100 |
Взрывобезопасный ток при коротком замыкании Iкз, кА | 16 | 16 | 16 | 16 | 16 |
Максимальное изгибающее усилие, Н | 305 | 305 | 305 | 305 | 305 |
Характеристики ОПН представленные на рисунках 5 и 6 получены для ограничителей производителя TEL. Характеристика «напряжение-время» ограничителей 6 — 10кВ типа ОПН–КР при образовании квазистационарных перенапряжений показана на рисунке – 5.
Рисунок 5 – Характеристика «напряжение–время»: 1 – с предварительным нагружением 3.6 кДж/кВ Uнд; 2 — без предварительного нагружения энергией.
Таблица 2 – Технические характеристики ограничителей типа ОПН 35 – 110 – 220 кВ (ОПН/TEL–X/X–550 УХЛ1)
Наименование параметров | 35/40.5 | 110/78 | 110/84 | 220/146 | 220/156 | 220/168 |
Класс напряжения сети, кВ | 35 | 110 | 110 | 220 | 220 | 220 |
Наибольшее длительно допустимое рабочее напряжение Uнд; кВ | 40.5 | 78 | 84 | 146 | 156 | 168 |
Номинальный разрядный ток 8/20 мкс, Iн; кА | 10 | 10 | 10 | 10 | 10 | 10 |
Остаточное напряжение Uост; кВ; не более: | ||||||
– при коммутационном импульсе тока | ||||||
125 А 30/60мкс | 93 | 178 | 191 | 334 | 356 | 386 |
250 А 30/60мкс | 98 | 188 | 202 | 352 | 376 | 404 |
500 А 30/60мкс | 101 | 192 | 207 | 362 | 384 | 414 |
– при грозовом импульсе тока | ||||||
5000 А, 8/20мкс | 119 | 230 | 247 | 428 | 460 | 494 |
10000 А, 8/20мкс | 130 | 250 | 269 | 468 | 500 | 538 |
20000 А, 8/20мкс | 146 | 295 | 301 | 524 | 560 | 602 |
при крутом импульсе тока 10000А, 1/10мкс | 153 | 295 | 317 | 552 | 590 | 634 |
Емкостный ток проводимости Iс, мА, не более: | ||||||
амплитуда | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
действующее значение | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Удельная энергия ОПН, кДж/кВ Uнд, не менее | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 |
Максимальная амплитуда импульса тока 4/10мкс, кА | 100 | 100 | 100 | 100 | 100 | 100 |
Взрывобезопасный ток при коротком замыкании Iкз, кА | 30 | 30 | 30 | 30 | 30 | 30 |
Максимальное изгибающее усилие, Н | 580 | 600 | 600 | 640 | 640 | 640 |
Характеристика «напряжение–время» ограничителей 35 – 220кВ типа ОПН–35,110,220 при образовании квазистационарных перенапряжений показана на рисунке – 6 .
Рисунок 6 – Характеристика «напряжение–время»: 1 — с предварительным рассеиванием энергии 5.5 кДж/кВ Uнд; 2 — без предварительного рассеивания энергии
Стоит ли применять ограничитель в сети
Каждый электрик размышляет стоит ли вообще покупать разрядник. Ведь это не самый дешевый элемент электромонтажа. Теоретически, во время ремонта или строительства проводки с нуля в квартире или доме расходы 3000 рублей (в случае 4-модульного протектора) – капля в океане расходов. На практике у защитного блока не всегда будет возможность доказать, что он нужен. Даже если он сработает, снижение напряжения может не всегда защитить чувствительные электронные устройства (лучше обстоит дело с защитой класса D).
Тем не менее редакция 2Схемы.ру настоятельно рекомендует оснастить сеть этим оборудованием. Если он защитит даже одно ценное устройство, расходы сразу окупятся и даже с избытком!