Особенности применения импульсного стабилизатора напряжения


Преобразование напряжения необходимо для того, чтобы реализовать возможность работы различных устройств от сети переменного тока. Кроме того, питание электронных схем разными величинами напряжения вынуждает выполнять не только превращение переменного электричества в постоянное, но и повышение или понижение разности потенциалов до нужных параметров.

Импульсный преобразователь напряжения

Основы импульсного преобразования

Работа подобных устройств, их ещё называют импульсными стабилизаторами (ИС), основана на ключевой стабилизации. В схеме имеется элемент, который выполняет регулировку выходных параметров за счёт своего запирания-отпирания.

В обычную трансформаторную схему входит трансформатор низкой частоты, имеющий первичную и вторичную обмотку. Импульсное преобразование тоже подразумевает наличие трансформатора, но уже высокочастотного.

Внимание! Высокочастотные импульсные трансформаторы обладают меньшими габаритами, дешевле, но их мощность выше.

Импульсные преобразователи напряжения (ИПН) допускают использование схем трёх типов:

  • повышающей;
  • понижающей;
  • инверторной.

ИПН обладают высоким КПД и малыми габаритами. Они включают в свой состав следующие элементы:

  • блок питания (источник питания);
  • ключ – элемент коммутации;
  • накопитель энергии индуктивной природы – дроссель, катушка;
  • диод блокировки;
  • фильтр выходного напряжения – конденсатор большой емкости.

Фильтр обычно включается параллельно нагрузке.

Стабилизатор на PT4115

PT4115 – унифицированная микросхема, разработанная компанией PowTech специально для построения драйверов для мощных светодиодов, которую можно использовать также и в автомобиле. Типовая схема включения PT4115 и формула расчета выходного тока приведены на рисунке ниже.

Понять, почему так происходит, а также ознакомиться с более детальным расчетом и выбором остальных элементов схемы можно здесь. Известность микросхема получила, благодаря своей многофункциональности и минимальному набору деталей в обвязке. Чтобы зажечь светодиод мощностью от 1 до 10 Вт, автолюбителю нужно всего лишь рассчитать резистор и выбрать индуктивность из стандартного перечня.

PT4115 имеет вход DIM, который значительно расширяет её возможности. В простейшем варианте, когда нужно просто зажечь светодиод на заданную яркость, он не используется. Но если необходимо регулировать яркость светодиода, то на вход DIM подают либо сигнал с выхода частотного преобразователя, либо напряжение с выхода потенциометра. Существуют варианты задания определенного потенциала на выводе DIM с помощью МОП-транзистора. В этом случае в момент подачи питания светодиод светится на полную яркость, а при запуске МОП-транзистора светодиод уменьшает яркость наполовину.

К недостаткам драйвера светодиодов для авто на базе PT4115 можно отнести сложность подбора токозадающего резистора Rs из-за его очень малого сопротивления. От точности его номинала напрямую зависит срок службы светодиода.

Обе рассмотренные микросхемы прекрасно зарекомендовали себя в конструировании драйверов для светодиодов в автомобиле своими руками. LM317 – давно известный проверенный линейный стабилизатор, в надежности которого нет сомнений. Драйвер на его основе подойдёт для организации подсветки салона и приборной панели, поворотов и прочих элементов светодиодного тюнинга в авто.

PT4115 – более новый интегральный стабилизатор с мощным MOSFET-транзистором на выходе, высоким КПД и возможностью диммирования.

Принцип работы

Стабилизатор напряжения 12 вольт

Импульсный стабилизатор напряжения использует принцип сравнения опорного напряжения с напряжением на выходе. Схема позволяет регулировать длительность открытия ключа. Входное напряжение от источника питания (ИП) пропускается ключом по сигналу управления заданными частями (импульсами) с учётом того, что средний потенциал (пониженный или повышенный) был стабильным.

Сравнение с линейным стабилизатором

Стабилизатор напряжения на транзисторе

Чтобы сравнить два принципа преобразования, нужно вспомнить, что линейные стабилизаторы (ЛС) – это обычно делитель напряжения. У него нестабильный потенциал подаётся на вход делителя, а стабильный – снимается со второго плеча (нижнего). Принцип стабилизации заключается в постоянном изменении сопротивления верхнего плеча схемы таким образом, чтобы на нижнем оно оставалось стабильным.

К сведению. Когда отношение Uвх/Uвых велико, то КПД линейного стабилизатора очень низкий. Это связано с потерями энергии на регулирующем резисторе. Он греется, оттого часть мощности на входе теряется.

У таких сборок есть свои плюсы, а именно: простота схемы, минимум элементов и неимение помех. По сравнению с линейными, импульсные стабилизаторы (ИС) сложнее, но работают стабильнее при правильно подобранной схеме.

В ИС могут возникать автоколебания, которые приводят к частичной неработоспособности или полному выходу преобразователя из строя. Это происходит в случае, когда импеданс источника Uвх превысит значение импеданса ИС, тогда при снижении Uвх повышается ток на входе.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства — стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями — импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Функциональные схемы по типу цепи управления

Параметрический стабилизатор напряжения

По виду управляющей цепи можно выделить несколько рабочих схем, включающих в себя:

  • триггер Шмитта;
  • ШИМ – широтно-импульсную модуляцию;
  • ЧИМ – частотно-импульсную модуляцию.

Важно! Импульсные стабилизаторы – это устройство с автоматическим регулированием, ориентирующееся на опорное напряжение, которое служит эталонным параметром для схемы регулирования.

С триггером Шмитта

При таком построении схемы стабилизации верхний и нижний пороги срабатывания триггера сравниваются с Uвх. Для этой цели используется компаратор – устройство сравнения. Ключ размыкается в момент, когда выходное напряжение сравняется с напряжением срабатывания триггера (Umax). Энергия, накопившаяся за это время, выдаётся на нагрузку, и Uвых после этого спадает. Как только её величина достигнет Umin (нижнего порога), триггер переключается, замыкая ключ.

Такой способ называется стабилизацией с двухпозиционной регулировкой или релейной. Схемы с триггером Шмитта имеют на выходе устройства напряжения с величиной пульсации, обусловленной разностью порогов срабатывания. Эту пульсацию практически устранить невозможно.

В ИС с триггером Шмитта частотное преобразование зависит от Uвх и Iн (тока нагрузки) и является переменным.

С широтно-импульсной модуляцией

На выходе таких схем получают Uср (среднее), на которое влияют скважность импульсов и Uвх. Операционный усилитель (ОУ) представляет собой схему сравнения Uвых и Uоп (опорного) путём вычитания и последующего усиления. Результат поступает на модулятор, который подстраивает свои параметры в зависимости от этого результата.

Модулятор изменяет (в сторону увеличения) отношение времени, при котором ключ открыт, к периоду тактового импульса генератора, если Uвых < Uоп.

Схема добивается такого управления ключом, чтобы разность между Uвых и Uоп сводилась к минимуму, когда происходит изменение Uвх или ток через нагрузку (Iн).

Внимание! В ИС с ШИМ частотное преобразование не имеет зависимости от Uвх и Iн.

С частотно-импульсной модуляцией

Подобные сборки отличаются тем, что скважность импульсов (частота) напрямую зависит от понижения Uвх или увеличения Iн. При этом длительность отпирающего ключ импульса неизменна. Частота подачи импульсов подчинена сигналу разности Uвых и Uоп. Моностабильный мультивибратор, имеющий управляемую запускающую частоту, может смело справиться с подачей команд на ключ.

Назначение драйверов для светодиодов

Яркость светодиодной лампы зависит от 2 параметров: тока, проходящего через нее, и идентичности характеристик полупроводников, т. к. любое несоответствие выведет детали из строя. Но современное производство не в состоянии обеспечить полностью одинаковые параметры кристаллов.

Он преобразует электроток:

  • задает ему амплитуду;
  • выпрямляет – делает его постоянным;
  • подает на все элементы одинаковый ток (немного меньше максимального уровня) и не допускает их пробоя.

Ключевые особенности

Главное отличие драйвера в том, что при входном напряжении, на которое он рассчитан (например, 140-240 V), он устанавливает на светодиодах заданный уровень тока. При этом потенциал на выходе устройства может быть любым.

Основных характеристик у него 3:

  1. Номинальный ток. Он не должен превышать паспортное значение светодиода, иначе диоды сгорят или будут гореть тускло.
  2. Напряжение на выходе. Зависит от типа подключения полупроводников и их числа. Оно равно произведению падения потенциала 1 элемента на их количество и может меняться в широких пределах.
  3. Мощность. От правильного расчета этой характеристики зависит вся работа устройства. Для этого суммируют мощности всех элементов и добавляют 20-25% (запас на перегрузку).

У светодиодной лампы из 10 элементов по 0,5 Вт этот параметр будет равен 5W. С учетом перегрузки следует выбрать драйвер на 6-7 W.

Но 2 последних параметра (мощность потребления и выходное напряжение) напрямую зависят от спектра излучения светодиода. Например, элементы ХР-Е (красные) при 1,9-2,5 V потребляют 0,75 W, а зеленые – 1,25 W при питании в 3,3-3,9 V. Получается, что драйвер в 10 W способен запитать 7 диодов одного цвета или 12 другого.

Теория питания светодиодных ламп от 220 в

Лед-лампа, лента под потолком или подсветка в современном телевизоре являются совокупностью нескольких мощных небольших светодиодов, размещенных в пространстве нужным образом.

Если каждый из них способен пропускать ток в 1 А при напряжении 3,3 V, то в осветительную сеть их включить нельзя – сразу сгорят. Можно воспользоваться делителем из резисторов, но на них будет рассеиваться большая мощность. Поэтому КПД светильника будет небольшим.

Для снижения напряжения и преобразования тока в постоянный применяют драйверы. Внутри этих устройств могут быть различные стабилизаторы тока, емкостно-резистивные делители и т. д.

В схему могут входить транзисторы, микросхемы, конденсаторы и т. д. Такие преобразователи меняют напряжение и обеспечивают подачу нужного количества тока каждому элементу.

Основные схемы силовой части

В зависимости от назначения ИС, можно выделить три базовых модели его построения:

  • понижающая;
  • повышающая;
  • инвертирующая.

Независимо от конструктивного исполнения и назначения ИС, устройствами, использующимися в роли ключа, могут быть:

  • тиристор;
  • транзистор (биполярный или полевой).

Основная задача подобного элемента – отрываться или закрываться по команде, поступающей на управляющий электрод.

Преобразователь с понижением напряжения

Обычно уменьшить величину напряжения необходимо чаще, потому такие ИС более востребованы.

У понижающего стабилизатора напряжения, приведённого на схеме, ключ на полевом транзисторе VT1 откроется при подаче на него управляющего напряжения. Ток от плюсовой клеммы будет поступать на нагрузку через сглаживающий дроссель L1. Включенный параллельно в цепь диод VD1 в данный момент не пропускает ток. После размыкания ключа цепь тока следующая: дроссель L1 – нагрузка – общий провод – диод VD1 – дроссель L1. При этом ток, проходящий через дроссель, не прекратится мгновенно, а будет постепенно уменьшаться.

Важно! У дросселей, имеющих большую индуктивность, он не становится равным нулю до начала следующего открытия ключа. Установка таких элементов нецелесообразна из-за увеличения габаритов и стоимости.

Конденсатор C1 в это время будет разряжаться на нагрузку и поддерживать U вых. Емкость C вместе с индуктивностью L образует фильтр, снижающий размах пульсаций.

Преобразователь с повышением напряжения

В отличие от понижения Uвх, этот тип схем используют для питания цепей нагрузки, которым для работы необходимо напряжение выше, чем у источника.

Компоненты схемы те же самые, но включены иначе. При открытом транзисторе диод закрыт, и на дросселе линейно нарастает ток. При запирании ключа ток начинает двигаться по цепи: плюсовая клемма – дроссель L1 – диод VD1 – нагрузка – минусовая клемма. Конденсатор C1 в это время будет заряжаться. Он будет поддерживать ток на нагрузке во время своего разряда на неё при следующем открытии ключа.

Инвертирующий преобразователь

Подобная сборка также не имеет гальванической развязки между входным и выходным каскадами. В ней совсем иное включение дросселя, конденсатора и нагрузки. Они расположены параллельно.

При открытом ключе VT1 ток протекает по цепи: плюсовая клемма – транзистор – дроссель – минусовая клемма. Дроссель накапливает энергию при содействии магнитного поля. Когда транзистор закрывается, то цепь прохождения тока меняется: дроссель – конденсатор C1 – диод VD1 – дроссель. Энергия дросселя и энергия конденсатора будут полностью отдаваться нагрузке. Амплитуда пульсации целиком зависит от ёмкости C1. В этот момент напряжение на нагрузке не меняется, несмотря на то, что ток через С1 спадает почти до нуля.

Кстати. Выходное напряжение у инвертирующих ИС может отличаться от напряжения источника питания, как в большую, так и в меньшую сторону.

Меню

Рассмотрим схемотехнику и функциональные возможности микросхем понижающих импульсных стабилизаторов в их развитии.

Схема импульсного понижающего стабилизатора напряжения изображена на рис. 1. Детальное рассмотрение процесса работы стабилизатора можно найти в специальной литературе, например в [1]. Напомним только, что без учета потерь в элементах схемы выходное напряжение определяется следующим образом:

где ton — время открытого состояния ключа, T — период следования импульсов.

Это позволяет путем изменения соотношения времени открытого состояния ключа и периода следования импульсов регулировать выходное напряжение, а при наличии цепи отрицательной обратной связи и стабилизировать его.

В качестве ключа VT используются как биполярные, так и полевые транзисторы, а вместо диода VD в стабилизаторах с синхронным выпрямлением применяется полевой транзистор.

Первой реализацией импульсного понижающего стабилизатора напряжения был релейный (гистерезисный) импульсный преобразователь, имеющий очень простое схемотехническое решение.

Если для большинства схем импульсных преобразователей практически неизбежно наличие пульсаций выходного напряжения, то для релейного преобразователя наличие пульсаций, приведенных к входу обратной связи, равных напряжению гистерезиса компаратора, — обязательное условие нормальной работы.

Упрощенная схема релейного преобразователя показана на рис. 2. Характерная и «малоприятная» особенность схемы — зависимость частоты преобразования от параметров элементов схемы и режима работы стабилизатора:

Как следует из вышеприведенной формулы, частота зависит от входного и выходного напряжений, эквивалентного последовательного сопротивления выходного конденсатора, индуктивности дросселя и напряжения гистерезиса компаратора. Изменение частоты вшироких пределах не позволяет оптимизировать по габаритам дроссель и выходной конденсатор, усложняет борьбу с излучаемыми помехами.

На рис. 3 изображена практическая схема релейного преобразователя, в которую входит микросхема линейного стабилизатора LM317. Такое решение — использование недорогих интегральных схем линейных стабилизаторов — применялось на первых порах при отсутствии специализированных микросхем импульсных стабилизаторов.

Хотя в настоящее время релейный способ регулирования в чистом виде практически не применяется, такие несомненные его достоинства, как малое время переходного процесса и отсутствие элементов коррекции частотной характеристики в цепи обратной связи, заставляют разработчиков искать новые конструктивные решения с его использованием.

На рис. 4 изображена схема стабилизатора с популярной микросхемой MC34063 фирмы Motorola. Частота собственных колебаний генератора задается емкостью конденсатора С2, частота вынужденных колебаний генератора выше и зависит от максимального тока ключа, устанавливаемого резистором ограничения тока R1. Поскольку скорость нарастания тока в индуктивности зависит от разности входного и выходного напряжений, частота преобразования увеличивается с ростом входного напряжения. Когда напряжение на выводе обратной связи 5 становится равным опорному напряжению, компаратор через логический элемент и триггер запрещает управление выходным ключом на один или несколько периодов частоты генератора. Таким образом, стабилизатор работает в режиме генерации пакетов импульсов. Коэффициент полезного действия стабилизатора не превышает 70%, основные потери — изза большого падения напряжения на составном транзисторе ключа и резисторе ограничения тока.

Обновленная версия MC34063 — микросхема NCP3063 фирмы ON Semiconductor — имеет более совершенную схему ограничения максимального тока ключа, работающую только в переходных и аварийных режимах, и дополнена температурной защитой.

Температурная защита, предусматриваемая во многих современных микросхемах, предназначенных для силовой электроники, переводит мощные выходные каскады в выключенное состояние при незначительном превышении температуры кристалла относительно максимально допустимой. Тем самым существенно повышается эксплуатационная надежность аппаратуры.

В микросхеме ADP1111 (схема, в состав которой она включена, показана на рис. 5) частота генератора фиксирована и равна 72 кГц. Регулирование выходного напряжения обеспечивается остановкой генератора по достижении выходным напряжением номинального значения, то есть, как и в предыдущей схеме, стабилизатор работает в режиме генерации пакетов импульсов. При остановленном генераторе собственное потребление микросхемы составляет всего 300 мкА, что делает работу схемы весьма эффективной. Дополнительный усилитель предназначен для построения схем детектора напряжения, усилителя ошибки, либо дополнительного линейного стабилизатора. Версии микросхемы с фиксированным выходным напряжением имеют встроенный делитель в цепи отрицательной обратной связи. У микросхемы есть встроенная защита по току ключа с возможностью уменьшения тока срабатывания защиты внешним резистором RLIM, чем обеспечивается регулировка максимального выходного тока стабилизатора.

Ограничение максимального выходного тока стабилизатора установкой пользователем максимального тока ключа допускает ограниченная номенклатура микросхем. При необходимости можно воспользоваться техническим решением с применением микросхемы — измерителя тока, предлагаемым в [2].

Используя современные конденсаторы на выходе стабилизатора, пульсации на частоте работы генератора можно сделать весьма малыми. Пульсации же, вызванные прекращением работы выходного ключа, не могут быть меньше гистерезиса компаратора, типовое значение которого равно 2 мВ для MC34063 и 8 мВ для ADP1111, умноженного на отношение выходного напряжения к опорному напряжению.

Модифицированный релейный метод управления используется в одном из последних семейств от National Semiconductor — LM5007, LM5008, LM5010. Схема импульсного стабилизатора на LM5007 показана на рис. 6. В этой схеме время открытого состояния ключа, обратно пропорциональное входному напряжению, устанавливается резистором R1. При выходном токе более 50 мА стабилизатор работает в режиме с непрерывным током дросселя и постоянной частотой переключения, определяемой по формуле:

Частота преобразования не зависит от входного напряжения и нагрузки.

При низком выходном токе преобразователь работает в режиме прерывистого тока дросселя и на пониженных частотах, что позволяет минимизировать потери. Рабочая частота в этом режиме определяется выражением:

Чтобы гарантированно обеспечить нормальную работу стабилизатора с современными конденсаторами, имеющими, как правило, низкие значения эквивалентного последовательного сопротивления, последовательно с конденсатором С2 включают резистор R6. Пульсации выходного напряжения велики, поскольку для работы стабилизатора рекомендуется напряжение пульсации на выводе обратной связи в пределах 25ч50 мВ. При необходимости более низкого уровня пульсации выходного напряжения нагрузку можно подключать параллельно конденсатору С2, либо потребуется включение на выходе стабилизатора дополнительного LC-фильтра, не охваченного цепью отрицательной обратной связи.

Для питания затвора n-канального МОП-транзистора использована схема «зарядового насоса». Конденсатор С4, подключенный к выводу BST, на этапе закрытого состояния ключа заряжается через встроенный диод. На этапе открытого состояния ключа напряжение на конденсаторе суммируется с входным напряжением, что и обеспечивает большее напряжение на затворе транзистора, чем на его стоке.

Как видно из функциональной схемы LM5007, микросхема существенно сложнее рассмотренных выше, и включает в себя узлы, повышающие надежность работы. Защита от пониженного входного напряжения предотвращает отпирание выходного транзистора при входном напряжении менее 6,3 В, когда схема управления уже не способна к адекватным действиям. Тем самым предотвращается выход микросхемы из строя в аварийной ситуации. Защита от повышения выходного напряжения немедленно запирает выходной ключ, если напряжение на выводе FB превысит порог в 2,875 В при внезапном увеличении входного напряжения или отключении нагрузки. Схема ограничения тока устанавливает максимальный ток ключа на уровне 0,725 А и, кроме того, регулирует время открытого состояния ключа, устанавливаемое резистором R2, при включении и перегрузке. При замыкании вывода SD/Ron на «землю» стабилизатор можно выключить, при этом ток, потребляемый от источника питания, равен сумме тока собственного потребления микросхемы 100 мкА и тока через резистор R1.

Более высокие качественные характеристики преобразования обеспечивает техника ШИМ-регулирования, используемая в подавляющем большинстве микросхем понижающих стабилизаторов. Частота преобразования, как правило, постоянна, что позволяет оптимизировать параметры дросселя и конденсатора выходного фильтра и упрощает задачу фильтрации помех на частоте преобразования. Величина пульсаций выходного напряжения существенно меньше, чем в релейных стабилизаторах, но реакция на скачкообразное изменение нагрузки или входного напряжения заметно хуже. Для обеспечения устойчивости обязательна частотная коррекция в цепи отрицательной обратной связи.

Рис. 7 поясняет принцип ШИМ-регулирования с управлением по напряжению. Выходное напряжение или его часть поступает на вход усилителя ошибки, другой вход которого подключен к источнику опорного напряжения Vref. Усиленная разность напряжений подается на вход ШИМ-компаратора, на другой вход которого поступает пилообразное напряжение с частотой задающего генератора. Сравнивая эти два напряжения, компаратор модулирует длительность импульсов, управляющих ключом S. Цепи частотной коррекции условно показаны в виде комплексных сопротивлений Z1 и Z2.

Практическая схема ШИМ-стабилизатора с применением микросхемы TPS5430 из серии Swift™ от Texas Instruments показана на рис. 8. Благодаря высокой частоте задающего генератора — 500 кГц, корректирующие конденсаторы имеют небольшие номиналы, и элементы частотной коррекции интегрированы в микросхему. Использована наиболее сложная из применяемых частотная коррекция типа 3, подробнее о которой можно узнать из публикации [3], посвященной частотной коррекции импульсных стабилизаторов. На рис. 9 схема изображена с керамическим выходным конденсатором С3. При использовании электролитических конденсаторов элементы коррекции С4, С6, С7, R3 не нужны, достаточно внутренней коррекции.

Микросхема включает в себя схему формирования повышенного напряжения питания драйвера n-канального МОП-транзистора, защиту от пониженного входного напряжения, защиту от повышенного выходного напряжения и тепловую защиту. В качестве датчика тока в схеме ограничения максимального тока ключа используется сопротивление канала открытого МОП-транзистора. При достижении током стока порогового значения ключ выключается до конца текущего периода тактовой частоты. В случае серьезной перегрузки, например, при коротком замыкании на выходе, по сигналу HICCUP источник опорного напряжения закорачивается на «землю» на 10–20 мс с последующим плавным пуском стабилизатора и повторением цикла до устранения перегрузки. Схема плавного пуска обеспечивает линейное нарастание напряжения на входе усилителя ошибки от нуля до величины опорного напряжения за 8 мс. При замыкании вывода ENA на «землю» стабилизатор можно выключить, при этом потребляемый ток не превышает 50 мкА.

Изменение амплитуды пилообразного напряжения обратно пропорционально изменению входного напряжения, что обеспечивает лучшую стабильность и меньшее время реакции на возмущение в виде изменения входного напряжения.

На рис. 9 изображена схема стабилизатора на микросхеме NCV8842 фирмы ON Semiconductor, в которой использована патентованная технология V² управления.

Обычная, относительно медленная, отрицательная обратная связь через усилитель ошибки обеспечивает высокую точность поддержания выходного напряжения в статическом режиме. Частотную коррекцию обеспечивает фильтр нижних частот, образованный большим выходным сопротивлением усилителя ошибки, около 8 МОм, и внешним конденсатором C4. Отсутствие усилителя в цепи быстрой отрицательной обратной связи обеспечивает ей широкую полосу пропускания, что существенно улучшает динамические характеристики стабилизатора.

Драйвер биполярного транзистора-ключа питается повышенным напряжением, что позволяет поддерживать транзистор при открытом состоянии выходного ключа в насыщении. Ключевой транзистор двухэмиттерный, ко второму эмиттеру меньшей площади подключен резистор — датчик тока.

Частота преобразования фиксирована и равна 170 кГц. При помощи импульсов внешней синхронизации, подаваемых на вывод SYNC, можно повысить частоту преобразования до 355 кГц и синхронизировать работу нескольких микросхем в устройстве. При этом можно организовать работу двух или более стабилизаторов со сдвигом фазы для уменьшения импульсного тока через конденсатор на входе стабилизатора, что снижает требования к конденсатору и упрощает его выбор.

Особенность микросхемы — в уменьшении тактовой частоты генератора до четверти от номинального значения, с одновременным уменьшением порога срабатывания защиты по току до 40% от номинального значения, пока напряжение обратной связи не достигнет порога срабатывания в цепи обратной связи по частоте, что обеспечивает уменьшение рассеиваемой мощности в микросхеме и внешних компонентах во время включения и при перегрузках.

Более совершенные динамические характеристики по сравнению со стабилизаторами с управлением по напряжению имеют ШИМ-стабилизаторы с управлением по току, обладающие к тому же лучшей устойчивостью. В дополнение к отрицательной обратной связи по напряжению их схема включает в себя быстродействующую цепь обратной связи по току, как показано на рис. 10. Сигнал обратной связи по току поступает с датчика тока ключа, выделяется на токоизмерительном резисторе RI и суммируется с сигналом обратной связи по напряжению.

Практическая схема стабилизатора с управлением по току на микросхеме SC4518H фирмы Semtech изображена на рис. 11. Частота преобразования фиксированная — 600 кГц, в режиме с внешней синхронизацией — до 1,2 МГц.

Сигнал обратной связи по току снимается с датчика тока, резистора 0,04 Ом, включенного в коллектор ключевого транзистора. Падение напряжения на токоизмерительном резисторе увеличивается усилителем тока, суммируется с пилообразным напряжением, формируемым задающим генератором, и поступает на вход ШИМ-компаратора, становясь опорным сигналом для сигнала обратной связи по напряжению, поступающего с выхода усилителя ошибки. Сигнал с усилителя тока поступает также в схему ограничения тока при перегрузке.

Устойчивость стабилизатора обеспечивается внешними элементами коррекции R3, C4, C5. Схема коррекции наклона пилообразного напряжения устраняет возможность самовозбуждения стабилизатора на субгармониках при коэффициенте заполнения более 50%, к чему склонны стабилизаторы с обратной связью по току. Подробнее о сути явления и способе его устранения — в [4].

Максимальный ток ключа ограничен схемой защиты от перегрузки по току на уровне 2 А. При длительной перегрузке или коротком замыкании на выходе предпринимаются периодические попытки плавного пуска

В микросхеме LM25005 использовано так называемое «квазитоковое» управление. Как видно из функциональной схемы LM25005 на рис. 12, сигнал обратной связи по току снимается с резистора, включенного последовательно с диодом VD1. Микросхема имеет широкий диапазон входного напряжения — 7–42 В и оптимизирована для применений с высоким входным напряжением. При большом отношении входного напряжения к выходному коэффициент заполнения становится очень мал, и неизбежные из-за наличия паразитных элементов в схеме искажения формы тока ключа на датчике тока ухудшают характеристики регулирования. Напротив, длительность импульса тока через диод в таком случае составляет значительную часть периода, и искажения на фронтах импульса сказываются в меньшей степени. Схема выборки и хранения формирует на выходе постоянное напряжение, пропорциональное амплитуде тока через токоизмерительный резистор, а в сумматоре восстанавливается пилообразная составляющая. Ток, заряжающий конденсатор С3, на котором формируется пилообразный сигнал, зависит от входного и выходного напряжений, а для устранения колебаний на субгармониках в зарядном токе присутствует постоянная составляющая, корректирующая наклон «пилы».

Уникальна схема контроля тока ключа и защиты от перегрузки. При корректной работе восстановленный сигнал пропорционален току ключа и, если его амплитуда превышает порог компаратора ограничения тока (1,75 В), ключ немедленно запирается. При малой индуктивности дросселя или высоком входном напряжении ток через ключ может превысить допустимую величину изза задержки распространения в компараторе. При подобной перегрузке схема выборки/хранения детектирует чрезмерное значение тока на этапе открытого состояния ключа, ключ запирается, и пропускается несколько импульсов, пока напряжение на выходе сумматора не станет меньше 1,75 В.

Еще одна особенность микросхемы — в гарантированной зарядке конденсатора вольтодобавки С7 при малой нагрузке через ключ, подключенный к выводу PRE, открывающийся на 250 нс в каждом цикле на этапе закрытого состояния выходного ключа.

Частота задающего генератора устанавливается резистором R3 в пределах 50–500 кГц, подачей синхронизирующих импульсов на вывод SYNC генератор можно заставить работать на частоте более высокой, чем частота собственных колебаний.

Плавный пуск обеспечивается зарядкой до опорного напряжения конденсатора С4, подключенного к выводу SS, а в итоге — к неинвертирующему входу усилителя ошибки, при постоянном токе 10 мкА. Изменяя емкость конденсатора, можно изменить время задержки выхода стабилизатора в номинальный режим.

На рис. 13 показана схема стабилизатора с синхронным выпрямлением и управлением по среднему току дросселя с применением микросхемы контроллера MAX5061 фирмы Maxim. Управление по среднему току дросселя свободно от проблем, связанных с усилением коротких импульсов тока, маскированием помех на их фронтах, задержками распространения сигнала, присущих методу управления по максимальному току ключа.

Поскольку стабилизатор рассчитан на большой выходной ток, мощные выходные транзисторы — внешние. Энергия передается в нагрузку и запасается в индуктивности, когда открыт транзистор верхнего плеча. В это время транзистор нижнего плеча закрыт. И, наоборот, при открытом транзисторе нижнего плеча, транзистор верхнего плеча закрыт, а энергия, запасенная в индуктивности, ретранслируется в нагрузку. Схемы с синхронным выпрямлением особенно эффективны при низких выходных напряжениях. Потери в транзисторе нижнего плеча многократно меньше, чем в диоде, который он заменяет.

Цепь обратной связи по току состоит из резистора датчика тока R1, включенного последовательно с дросселем, прецизионного дифференциального усилителя тока, усилителя ошибки по току и ШИМ-компаратора. Выходное напряжение усилителя ошибки по току представляет собой усиленную разность между выходным напряжением усилителя ошибки по напряжению и усилителя тока. Этим обеспечивается регулировка тока дросселя в соответствии с выходным напряжением. Частотная характеристика усилителя ошибки по току имеет спад на высоких частотах, что ослабляет влияние шумов и помех в сигнале с датчика тока. Внешние элементы коррекции частотной характеристики, требующие тщательного расчета, подключены к выводу CLP, соединенному с выходом усилителя ошибки по току.

Плавный пуск организован подачей линейно нарастающего напряжения 0–0,7 В с 5-разрядного ЦАП на третий (неинвертирующий) вход усилителя ошибки по напряжению. Пока напряжение на выходе ЦАП меньше опорного напряжения 0,6 В, схема работает под управлением ЦАП, далее переходит в режим работы с опорным напряжением.

Частота преобразования устанавливается в пределах от 125 кГц до 1,5 МГц внешним резистором RT, подключенным к многофункциональному выводу RT/SYNC/EN. Соответствующими сигналами, подаваемыми на этот вывод, стабилизатор можно синхронизировать от внешнего генератора или выключить.

При максимально допустимом входном напряжении 27 В выходное напряжение не может превышать 5,5 В, максимального входного синфазного напряжения усилителя тока, ограниченного напряжением встроенного стабилизатора, питающего все узлы микросхемы.

Еще один пример стабилизатора с синхронным выпрямлением с использованием микросхемы MIC2285 фирмы Micrel, работающей с частотой преобразования 8 МГц, изображен на рис. 14. Коэффициент полезного действия конкретной схемы стабилизатора достигает 90%. Транзистор верхнего плеча p-канальный, соответственно отсутствует схема вольтодобавки для питания его драйвера.

При выходном токе, не превышающем 60 мА, при подаче высокого логического уровня на вывод LOWQ схему можно перевести в режим LDO-стабилизатора, что позволит уменьшить собственное потребление схемы и снизить уровень шумов в выходном напряжении.

Похожими возможностями обладает микросхема NCP1500, которая работает в качестве понижающего стабилизатора с синхронным выпрямлением при наличии импульсов синхронизации, автоматически переключаясь в режим с пропусками импульсов при малой нагрузке, а при отсутствии импульсов синхронизации схема переключается в режим линейного LDO-стабилизатора.

Микросхемы импульсных преобразователей, предназначенные для применения в компьютерах и портативной аппаратуре, имеют сложные функциональные схемы, включают в себя по несколько каналов импульсных и линейных стабилизаторов с управляемым по цифровым входам выходным напряжением, определенным порядком их включения и другими дополнительными функциями. Пример подобной микросхемы — MPC18730 от Freescale Semiconductor, управляемая микроконтроллером по трехпроводному интерфейсу и включающая в себя два понижающих импульсных стабилизатора с синхронным выпрямлением, один повышающий импульсный преобразователь и три линейных LDO-стабилизатора.

Производители микросхем стремятся максимально интегрировать в кристалл компоненты и функции стабилизатора, но не все возможно. Мала номенклатура микросхем со встроенным диодом, технология быстродействующих диодов плохо сочетается с технологией интегральных микросхем, да и площадь, занимаемая диодом на кристалле, слишком велика. В их числе одна из первых микросхем импульсного стабилизатора фирмы Motorola — μA78S40, медленный встроенный диод которой сам производитель рекомендует заменять внешним быстродействующим, и LT1572 от Linear Technology со встроенным диодом Шоттки (1 А, 20 В). Экзотикой остается и микросхема MIC33050 от Micrel, 0,5-А стабилизатор с интегрированным дросселем, работающий на частоте 4МГц.

Облегчают выбор подходящей микросхемы интерактивные таблицы, размещенные на сайтах производителей, позволяющие осуществлять сортировку по выбранным параметрам. Бесплатные программы, такие как Webench от National Semiconductor, Swift Designer Tool и SwitcherPro™ от Texas Instruments, LTSpice/SwitcherCAD III от Linear Technology, содержат большое количество примеров схем преобразователей различной конфигурации, позволяют рассчитать параметры внешних компонентов, моделировать схему стабилизатора и наблюдать сигналы в различных цепях схемы.

Литература

  1. Мелешин В. И. Транзисторная преобразовательная техника. М.: Техносфера, 2005.
  2. Maxim/Dallas. Application Note 478. Current-Limit Circuit for Buck Regulator.
  3. A General Approach for Optimizing Dynamic Response for Buck Converter. Application Note AN8143/D, ON Semiconductor.
  4. Modelling, Analysis and Compensating of the Current Mode Controller. Application Note U-97, Unitrode. slua101.pdf. Texas Instruments.

Влияние диода на КПД

Включенный в электрическую цепь диод вызывает на себе падение напряжения от 0,4 до 0,7 В. При токе от нескольких ампер и низком Uвых на элементе происходит потеря мощности, что приводит к снижению КПД. Применяют альтернативный вариант – замену диода на полевой транзистор. Подбирают такой, чтобы в открытом состоянии падение напряжения на нём было минимальным.

Внимание! Можно в схемах вместо диода поставить ещё один ключ, который будет работать в противофазе с основным.

Особенности использования

Импульсные стабилизаторы могут использоваться как драйверы для светодиодов и led-ламп. Кроме того, их применяют в различных устройствах, таких как:

  • блоки питания ЖК телеприёмников;
  • оборудование навигации;
  • источники питания для компьютеров и устройств цифровых систем.

Импульсные стабилизаторы используют для зарядных устройств и преобразования переменного тока в постоянное электричество.

Фильтрация импульсных помех

Сильные помехи, издаваемые импульсным стабилизатором напряжения (ИСН) в моменты коммутации ключа (броски тока и напряжения), необходимо подавлять. Для этого требуется применять фильтры и размещать их на входе и выходе.

Входное сопротивление

У ИСН, работающих под нагрузкой, при увеличении Uвх уменьшается ток на входе (Iвх). Это значит его входное сопротивление отрицательно дифференциальное. При подключении ИСН к источникам, у которых внутреннее сопротивление велико, возможна нестабильная работа.

Использование в сетях переменного тока

Для подключения к источнику переменного тока перед ИСН устанавливают выпрямитель и фильтр. Эта зона, где возникает опасность поражения человека током. Элементы, входящие в эту зону, должны быть закрыты от прикосновения или отмечены маркером (графическое и цветовое предупреждение).

Преимущества ОС-регулирования

Обратная связь при регулировании напряжения в ИС является важной опцией для импульсных стабилизаторов. Она позволяет поддерживать на выходе устройства напряжение стабильной величины, чутко следя за бросками напряжения и тока. В ИСН применяется широкополосная ОС (чем шире интервал частот, тем меньше уровень пульсации в результате).

Доступность на рынке радиодеталей комплектующих для построения ИСН даёт возможность собрать своими руками любую из схем импульсных стабилизаторов. Использование в них готовых стабилизаторов на интегральных микросхемах (ИМС) и ключей на полевых транзисторах делает устройство максимально компактным.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.

Недостатки прибора:

  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]