Оптрон (оптопара) PC817: datasheet, характеристики и схема включения

Популярность оптрона на транзисторе pc817 — очень велика. Он входит почти в любой импульсный элемент питания с гальваникой и с обратной связью.

Устройство обладает вполне удобным корпусом. Расстояние между выводами составляет 2,54 мм, ряды находятся на расстоянии друг от друга 7,62 мм.

Основным изготовителем PC817 является фирма Sharp, остальные фабрики электроники производят pc817 аналоги. Кстати, делая ремонт различной электроники, люди часто натыкаются в первую очередь на заменители, например, SFH618 от Сименс или TLP521-1 от Тошиба. Есть также двойной и тройной варианты оригинала: PC827 и PC837.

Но выгоднее применять не многоканальный заменитель, а определенное число PC817.

Схема подключения PC817

Она является обычной, как и для всех транзисторных оптронов. Входной ток должен быть ограничен. Для этого можно использовать резистор. Выходной ток также не должен превышаться.

Pc817 схему включения 372 можно увидеть на рисунке:

Pc817 характеристики на русском

Параметры светового диода PC817:

  • Прямонаправленный ток — 50 мА.
  • Максимальный ток прямого направления — 1 А.
  • Напряжение, направленное в обратную сторону — 6 В.
  • Рассеянная мощность — 70 МВт.

Параметры фототранзистора PC817

Параметры у него такие:

  • Напряжение между коллектором и эмиттером составляет 35 В.
  • Эмиттера-коллектора — 6 В.
  • Коллекторный ток — 50 мА.
  • Рассеянная коллекторная мощность — 150 мВт.

Нужно не забывать об еще одном важном параметре. Он называется коэффициентом передачи тока, CTR. Единицей его измерения являются %. В обозначении оптрона в pc817 datasheet он соответствует букве, идущей за главным кодом, как и в остальных оптронах pc817 и полупроводниках.

Сфера применения устройства

Используются они в самых различных сферах:

  • В качестве элементов гальванической развязки оптроны применяются: для связи блоков аппаратуры, между которыми имеется значительная разность потенциалов; для защиты входных цепей измерительных устройств от помех и наводок.
  • Другая важнейшая область применения оптронов – оптическое, бесконтактное управление сильноточными и высоковольтными цепями. Запуск мощных тиристоров, симисторов, управление электромеханическими релейными устройствами. Импульсные блоки питания.
  • Создание “длинных” оптронов (приборов с протяженным гибким волоконно-оптическим световодом) открыло совершенно новое направление применения изделий оптронной техники – связь на коротких расстояниях.
  • Различные оптроны находят применение и в радиотехнических схемах модуляции, автоматической регулировки усиления и других.
  • Воздействие по оптическому каналу используется здесь для вывода схемы в оптимальный рабочий режим, для бесконтактной перестройки режима.
  • Возможность изменения свойств оптического канала при различных внешних воздействиях на него позволяет создать целую серию оптронных датчиков: таковы датчики влажности и загазованности, датчика наличия в объеме той или иной жидкости, датчики чистоты обработки поверхности предмета, скорости его перемещения.
  • Универсальность оптронов как элементов гальванической развязки и бесконтактного управления, разнообразие и уникальность многих других функций являются причиной того, что сферами применения optocoupler стали вычислительная техника, автоматика, связная и радиотехническая аппаратура, автоматизированные системы управления, измерительная техника, системы контроля и регулирования, медицинская электроника, устройства визуального отображения информации.

Преимущества оптронов

  • возможность обеспечения гальванической развязки между входом и выходом;
  • для оптронов не существует каких-либо принципиальных физических или конструктивных ограничений по достижению сколь угодно высоких напряжений и сопротивлений развязки и сколь угодно малой проходной емкости;
  • возможность реализации бесконтактного оптического управления электронными объектами и обусловленные этим разнообразие и гибкость конструкторских решений управляющих цепей;
  • однонаправленность распространения информации по оптическому каналу, отсутствие обратной реакции приемника на излучатель;
  • широкая частотная полоса пропускания оптрона, отсутствие ограничения со стороны низких частот;
  • возможность передачи по оптронной цепи, как импульсного сигнала, так и постоянной составляющей;
  • возможность управления выходным сигналом оптрона путем воздействия на материал оптического канала и вытекающая отсюда возможность создания разнообразных датчиков, а также разнообразных приборов для передачи информации;
  • возможность создания функциональных микроэлектронных устройств с фотоприемниками, характеристики которых при освещении изменяются по сложному заданному закону;
  • невосприимчивость оптических каналов связи к воздействию электромагнитных полей, что обусловливает их защищенность от помех и утечки информации, а также исключает взаимные наводки;
  • физическая и конструктивно-технологическая совместимость с другими полупроводниковыми и радиоэлектронными приборами.

Будет интересно➡ Маркировка различных видов диодов

Недостатки оптронов

  • значительная потребляемая мощность, обусловленная необходимостью двойного преобразования энергии (электричество – свет – электричество) и невысокими КПД этих переходов;
  • повышенная чувствительность параметров и характеристик к воздействию повышенной температуры и проникающей радиации;
  • временная деградация параметров optocoupler;
  • относительно высокий уровень собственных шумов, обусловленный, как и два предыдущих недостатка, особенностями физики светодиодов;
  • сложность реализации обратных связей, вызванная электрической разобщенностью входной и выходной цепей;
  • конструктивно-технологическое несовершенство, связанное с использованием гибридной непланарной технологии, с необходимостью объединения в одном приборе нескольких – отдельных кристаллов из различных полупроводников, располагаемых в разных плоскостях.

Тестер оптронов

Форумы радиолюбителей часто содержат такое мнение, что, раз элемент стоит недорого, то зачем нужна pc817 проверка. Достаточно его просто вовремя менять.

На самом деле все не совсем так. Нужно понимать, сгорел оптрон или нет, чтобы сделать вывод, повредилось ли что-нибудь еще. Бывает так, что и новые оптопары горят, так как у них есть заводской брак.

Как проверить pc817? Для этого проводят прозвон светового диода с помощью тестера. Сначала выясните, есть ли короткое замыкание в транзисторе. После — пропустите ток через световой диод и убедитесь в открытии транзистора.

Создать простой прибор для тестирования оптронов можно в домашних условиях. Для этого вам понадобятся:

  1. Светодиоды — 2 штуки.
  2. Кнопки — 2 штуки
  3. Резисторы — 2 штуки.

Световые диоды должны соответствовать силе тока от 5 до 20 мА и напряжению примерно 2 В. При этом на двух резисторах должно быть сопротивление в районе 300 В.

Источником питания тестера является Usb-порт с напряжением 5 В. Но можно использовать и 3-4 батарейки 2А. Подойдут и батарейки 9-12 В, или источник питания с таким же напряжением. Только здесь придется сделать пересчет сопротивлений двух резисторов.

Теперь рассмотрим, как работает оптопара, основываясь на разных экспериментах.

Пример твердотельного реле

Предположим, нам нужен микроконтроллер с сигналом порта цифрового выхода всего лишь +5 В для управления нагревательным элементом 120 В переменного тока, 600 Вт. Для этого мы могли бы использовать опто-триационный изолятор MOC 3020, но внутренний триак может пропускать только максимальный ток (I TSM ) в пике 1 А на пике источника переменного тока 120 В, поэтому необходимо также использовать дополнительный переключающий триак.

Сначала давайте рассмотрим входные характеристики оптоизолятора MOC 3020 (доступны другие опто-триаки). Спецификация оптоизоляторов говорит нам, что прямое напряжение (V F ) падения входного светодиода составляет 1,2 В, а максимальный прямой ток (I F ) составляет 50 мА.

Светодиоду требуется около 10 мА, чтобы он мог достаточно ярко светиться до максимального значения 50 мА. Однако порт цифрового выхода микроконтроллера может выдавать максимум 30 мА. Тогда значение требуемого тока лежит где-то между 10 и 30 миллиампер. Следовательно:

Таким образом, можно использовать резистор для ограничения последовательного тока со значением от 126 до 380 Ом. Поскольку порт цифрового выхода всегда переключается на +5 В и для уменьшения рассеивания мощности через светодиод оптопары мы выберем предпочтительное значение сопротивления 240 Ом. Это дает светодиодный прямой ток менее 16 мА. В этом примере подойдет любое предпочтительное значение резистора между 150 Ом и 330 Ом.

Нагрузка нагревательного элемента составляет 600 Вт. Использование 120 В переменного тока даст нам ток нагрузки 5 ампер (I = P / V). Поскольку мы хотим управлять этим током нагрузки в обоих полупериодах (все 4 квадранта) формы сигнала переменного тока, нам потребуется триак переключения сети.

BTA06 — это симистор 600 В на 6 ампер (I T (RMS) ), подходящий для общего / двухпозиционного переключения нагрузок переменного тока, но подойдет любой аналогичный симистор с номинальным напряжением 6–8 ампер. Кроме того, для этого переключающего триака требуется только 50 мА привода затвора для запуска проводимости, что намного меньше максимального значения 1 А для оптоизолятора MOC 3020.

Учтите, что выходной триак оптоизолятора включился при пиковом значении (90 o ) среднеквадратичного напряжения питания 120 В переменного тока. Это пиковое напряжение имеет значение: 120 x 1,414 = 170Vpk. Если максимальный ток опто-триаков (I TSM ) составляет 1 А, то минимальное значение требуемого последовательного сопротивления составляет 170/1 = 170 Ом или 180 Ом до ближайшего предпочтительного значения. Это значение 180 Ом будет защищать выходной триак оптопары, а также затвор триака BTA06 при питании 120 В переменного тока.

Если симистор оптоизолятора включается при значении пересечения нуля (0 o ) среднеквадратичного переменного напряжения питания 120 В , то минимальное напряжение, необходимое для подачи требуемого тока возбуждения затвора 50 мА, заставляющего переключающий триак в проводимость, будет: 180 Ом х 50 мА = 9,0 вольт. Затем симистор срабатывает, когда синусоидальное напряжение Gate-to-MT1 превышает 9 вольт.

Таким образом, минимальное напряжение, требуемое после точки пересечения нуля формы сигнала переменного тока, должно составлять 9 вольт, при этом рассеяние мощности в этом последовательном затворном резисторе очень мало, поэтому можно безопасно использовать резистор номиналом 0,5 Ом с сопротивлением 0,5 Ом и номиналом 0,5 Вт. Рассмотрим схему ниже.

Исследования работы оптрона

Для проведения эксперимента нам понадобится несколько приборов:

  1. Осциллограф.
  2. Генератор.
  3. Мультиметр (2 штуки).
  4. Макетная плата.

К входу оптрона нужно подать сигнал определенного вида. При выходе его необходимо изучать указанными приборами.

Суть первого испытания состоит в том, что нужно подать линейно увеличиваемое напряжение. Его источником является блок питания с шагом 0,1 В. Замер производится с помощью цифровых мультиметров около входа и выхода.

После — такая же процедура проводится с участием осциллографа и генератора. Там формируется сигнал, амплитуда которого равна 5 В.

Что представляет собой оптопара

Перед нами одноканальное устройство, его оптический канал — закрыт. Он состоит из светового диода и фотографического транзистора, которые находятся в корпусе smd. Они, как правило, находятся в большей части импульс-блоков питания в обособленной цепи, где применяется обратная связь. Гальваническая развязка в таких схемах pc817 должна быть идеальной.

Описание устройства

Излучатель – бескорпусный светодиод, – как правило, помещают в верхней части металлического корпуса, а в нижней – на кристаллодержателе – укрепляют кристалл кремниевого фотоприемника, например фототиристора. Все пространство между светодиодом и фототиристором заливают твердеющей прозрачной массой. Эту заливку покрывают отражающим внутрь световые лучи слоем, который препятствует рассеянию света за пределы рабочей зоны. Мало отличается от описанной конструкция резисторного оптрона.

Здесь в верхней части металлического корпуса укреплена сверхминиатюрная лампа накаливания, а в нижней – фоторезистор на основе селенистого кадмия. Фоторезистор изготавливают отдельно, на тонкой подложке из ситалла. На нее напыляют пленку из полупроводникового материала – селенида кадмия, а затем – формообразующие электроды из токопроводящего материала (например алюминия). К электродам приваривают выходные выводы. Жесткое соединение лампы и подложки между собой обеспечивается затвердевшей прозрачной массой. Отверстия в корпусе для выводов оптрона залиты стеклом. Герметичное соединение крышки и основания корпуса обеспечено сваркой.

Вольт-амперная характеристика (ВАХ) тиристорного оптрона примерно такая же, что и у одиночного тиристора. При отсутствии входного тока (I=0 – темновая характеристика) фототиристор может включиться только при очень высоком значении приложенного к нему прямого напряжения (800…1000 В). Так как практически приложение столь большого напряжения недопустимо, то эта кривая имеет чисто теоретический смысл.

Это интересно! Все о полупроводниковых диодах.

Если приложить к фототиристору прямое рабочее напряжение (от 50 до 400 В, в зависимости от типа оптрона), включение прибора возможно только при подаче входного тока, который теперь является управляющим. Скорость включения оптрона зависит от значения входного тока. Типичные значения времени включения t=5…10 мкс. Время выключения оптрона связано с процессом рассасывания неосновных носителей тока в переходах фототиристора и зависит только от значения протекающего выходного тока. Реальное значение времени выключения находится в пределах 10…50 мкс.

Будет интересно➡ Что такое Диод Зенера

Максимальный и рабочий выходной ток фоторезисторного оптрона резко уменьшается при увеличении температуры окружающей среды выше 40 градусов по цельсия. Выходное сопротивление этого оптрона до значения входного тока 4 мА остается постоянным, а при дальнейшем увеличении входного тока (когда яркость свечения лампы накаливания начинает возрастать) резко уменьшается. Кроме описанных выше, существуют оптроны с так называемым открытым оптическим каналом. Здесь осветителем служит светодиод инфракрасного излучения, а фотоприемником могут быть фоторезистор, фотодиод или фототранзистор.

Отличие этого оптрона в том, что его излучение выходит наружу, отражается от какого-либо внешнего предмета и возвращается в оптрон, к фотоприемнику. В таком оптроне выходным током может управлять не только входной ток, но также изменение положения внешней отражающей поверхности. У оптронов с открытым оптическим каналом оптические оси излучателя и приемника расположены либо параллельно, либо под небольшим углом. Существует конструкции подобных оптронов с соосным расположением оптических осей. Такие приборы называют оптопрерывателями.

Цоколевка

С распиновкой РС817 все более или менее понятно. Устройство помещается в 4-контактный корпус DIP. Для него применяется и поверхностный, и дырочный монтаж.

В одном из контактов есть вдавленная точка, указывающая на анод светового диода изнутри. Нумерация ножек осуществляется по часовой стрелки. Вторым по счету идет катод. Выводы номер 3 и 4 являются эмиттером и коллектором.

Современные варианты прибора были с хорошим результатом протестированы в соответствии с международными стандартами. Они безопасны в эксплуатации и трудно воспламеняемы, как указано в pc817 даташит.

Как самостоятельно сделать простые устройства на оптроне

Вы можете встретить оптопару pc817 в телефонной зарядке или компьютерном блоке питания, поэтому добыть ее — совсем не трудно. На ее основе собирается простая светодиодная мигалка, имеющая стробоскопический эффект.

Нужно иметь при себе:

  1. Деталь для питания с напряжением 4,2 В.
  2. Световой диод с любым окрасом.
  3. Резисторы с сопротивлениями 5,6 и 1 кОм, соответственно.
  4. Оптрон на транзисторе pc817.
  5. Конденсатор с емкостью 220 мкФ и напряжением 10 В.

Первым делом нужно рассмотреть саму оптопару. В нее входят 2 детали, которые соединяет оптическая связь. Иными словами, при подаче напряжения на световой диод, происходит открытие внутреннего транзистора.

Имейте в виду, что точка является первым отсчетным контактом. Внутри самого элемента этих контактов — 4. 1 и 2 относятся к входу, через который подключают внутренний световой диод. А 3 и 4 являются выходом.

Используя этот простейший радиоэлемент, создается элементарный генератор с повторяющимися импульсами. Схему не надо настраивать и устанавливать туда полностью исправные элементы. Сборку делают путем навесного монтажа, не используя плату.

  1. Зажмите оптрон зажимом и припаяйте 2 резистора.
  2. Затем сделайте припайку светового диода. Имейте в виду, он включается полярно.
  3. После этого — запаяйте конденсатор.
  4. Следующий этап — создание соединительных дорожек из луженых проводов.
  5. Припаяйте контакты детали для питания.
  6. Если мигалка начала выполнять свою функцию (то есть мигать), значит, она исправна.
  7. Емкость конденсатора нужна непосредственно для регулировки частоты мигания.
  8. При проблемах с запуском проверьте, соблюдается ли полярность всех деталей. Исключение составляют резисторы.

Применить эту простейшую схему можно в разных областях.

Все мы знаем, что в большинстве промышленных приборов очень важно вовремя обнаружить напряжение сети изолированно. С помощью изоляции здесь нужно предотвратить протекание тока (постоянного или переменного) от 1-й половины конструкции к другой, а также, обеспечить передачу сигнала и мощности.

Благодаря изоляции можно развязать разницу потенциалов, добиться устойчивости устройства к помехам и защитить его от сильных перепадов напряжений. Как правило, чтобы обнаружить напряжение, нужны оптроны с постоянным или переменным током. Их нужно установить на пути, где проходит сигнал.

Ни в коем случае не допускается прикосновение к плате, когда прибор уже включен. Это приводит к ударам током.

Как соорудить детектор сети с переменным током

В оптроне PC817B есть инфракрасный световой диод, который связан оптикой с фотографическим транзистором. Тот, в свою очередь, помещен в дип-корпус с 4 контактами. Стандартное изоляционное напряжение при входе-выходе равно 5 кВ, у коллектора-эмиттера — до 80 В, CTR может составить до 600% при токе входа 5мА.

В схеме не обязателен трансформатор с переменным током. Для снижения напряжения используется последовательный конденсатор, который подключается напрямую к сети с напряжением 220 В. Для выпрямления напряжения переменного тока применяется диод, а итоговое напряжение при постоянном токе — корректируется конденсатором.

Стабилитрон является предварительным стабилизатором, чтобы полностью защитить цепь. При обрыве на конденсаторе, например, при случайном перегорании резистора, напряжение конденсатора не превышает 5 В. Поэтому конденсатор фильтра не может взорваться.

Итоговый вход провоцирует появление низкого выходного сигнала во время подходящего сопряжения с внешней конструкцией, где есть подтягивающий резистор. Если же питание отключается, появляется высокоуровневый выходной сигнал.

Можно создать и улучшенный вариант такого сетевого детектора, который будет подстроен под цифровую технику. Понятно, что самым элементарным и безопасным способом определить электричество в сети, используя микроконтроллер. Здесь не обойтись без оптрона. Для безопасного подключения pc817 такого высокого напряжения (220 в) к оптопаре, нужно ограничение тока. Из-за его величины должна быть учтена номинальная резисторная мощность.

Для плавного стабильного выхода неизменного тока, к примеру, если речь идет о микроконтроллере GPIO, нужна небольшая доработка схемы. Здесь не имеет большого значения емкость конденсатора. Она может находиться в пределах от 2 до 10 мкФ.

Применение 2-направленной оптопары

Есть еще 1 актуальный вариант — применение 2-направленной оптопары. По-другому она называется оптроном переменного тока. Она включает пару внутренних световых диодов. Они направлены противоположно. Одна из таких моделей — H11AA1.

Благодаря конструкции задуманного детектора-универсала мониторить сигнал, идущий под высоким напряжением, становится проще. Она помогает обеспечить формирование цифрового сигнала выхода с гальваникой. В схеме отсутствуют дорогостоящие элементы. Ее можно собрать в течение часа.

В проект входят 2 важных фрагмента. Один из них производит обработку входа высокого напряжения, второй — изолирует низковольтную секцию от высоковольтной. А для усиления защиты цепи — не обойтись без предохранителя и металло оксидного варистора.

В основе вариатора — находится металлооксид. Он является резистором, который зависит от напряжения. Он своеобразен и защищает схемы от превышенного напряжения. Благодаря ему и снижаются колебания этого показателя.

При обычных условиях варистор обладает большим сопротивлением, но при повышении подключенного напряжения, по сравнению с ограничением вариатора, оно сразу уменьшается. Варистор без труда подключается между фазой и нулем, но лишь вслед за предохранителем. Тогда, если произойдет короткое замыкание варистора, за счет предохранителя произойдет отключение устройства от сети.

Возможно использование подтягивающего резистора для микроконтроллеров, где внутри отсутствует данный элемент. Мало того, при помощи двухконтактной перемычки включается или выключается корректирующий конденсатор, если это необходимо.

Итоговый несглаженный сигнал выхода — не идеально ровный, но его колебания — не больше 500 мВ. Вход в этой оптопаре подключается к напряжению сети, которое обрабатывается схемой делителя емкостей потенциала. Наибольшее возможное коммутационное напряжение оптрона равно 30 В, а транзистор, который подключается к выходу оптрона, способен выдержать силу тока до 10 мА.

Один из примеров использования датчика — когда он является цепью сброса в момент включения в сеть. Второй вариант — это аварийная система подачи тока, сигнализация на микроконтроллере или схема идентификатора сбоя/возобновления питания.

Структура и характеристики

В оптопарах применяются фотоприемники, чувствительные в ближней инфракрасной и видимой областях, поскольку именно для данной части спектра характерны источники интенсивного излучения, могущие работать в качестве фотоприемников без охлаждения. Фотоприемники с р-n-переходами (диоды и транзисторы) на основе кремния универсальны, область их максимальной спектральной чувствительности находится вблизи 0,8 мкм.

Оптопара характеризуется в первую очередь коэффициентом передачи по току CTR, то есть отношением токов входного и выходного сигналов. Следующий параметр — скорость передачи сигнала, по сути – граничная частота fc работы оптопары, связанная с временами фронта tr и среза tf для передаваемых импульсов. Наконец, параметры, характеризующие оптопару с точки зрения гальванической развязки: сопротивление развязки Riso, максимальное напряжение Viso и проходная емкость Cf.

Входное устройство, входящее в структуру оптрона, предназначено для создания оптимальных условий работы излучателя (светодиода), для смещения рабочей точки в линейную зону ВАХ. Входное устройство обладает достаточным быстродействием и широким диапазоном входных токов, обеспечивая надежность передачи информации даже при малом (пороговом) токе. Оптическая среда находится внутри корпуса, через нее передается свет от излучателя к фотоприемнику.

В оптронах с управляемым оптическим каналом имеется дополнительное устройство управления, через которое можно с помощью электрических или магнитных средств влиять на свойства оптической среды. На стороне фотоприемника сигнал восстанавливается, с высоким быстродействием преобразуясь из оптического в электрический. Выходное устройство на стороне фотоприемника (например включенный в схему фототранзистор) призван преобразовать сигнал в стандартную электрическую форму, удобную для дальнейшей обработки в следующих за оптроном блоках. Оптопара зачастую не содержит входных и выходных устройств, поэтому ей требуются внешние цепи для создания нормального режима работы в схеме того или иного прибора.

Типы и разновидности

Оптоэлектронные устройства работают по-разному в зависимости от того, к какому из двух видов направлений они относятся:

  • Электронно-оптическое.

Работа прибора базируется на принципе, в соответствии с которым происходит преобразование световой энергии в электрическую. Причём, переход осуществляется посредством твёрдого тела и происходящих в нём процессов внутреннего фотоэлектрического эффекта (выражающегося в испускании веществом электронов под воздействием фотонов) и эффекта свечения под действием электрического поля.

  • Оптическое.

Прибор функционирует благодаря тонкому взаимодействию твёрдого тела и электромагнитного излучения, а также используя лазерные, голографические и фотохимические устройства.

Фотонные электронно-вычислительные машины компонуются с использованием одной из двух категорий оптических элементов:

  • Оптронов;
  • Кванто-оптических элементов.

Они являются моделями устройств соответственно электронно-оптического и оптического направлений.

Будет ли оптрон передавать сигнал линейно, определяется теми характеристиками, которыми обладает вмонтированный в конструкцию фотоприёмник. Наибольшую линейность передачи можно ожидать от резисторных оптронов. Как следствие, процесс эксплуатации подобных устройств отличается наибольшим удобством. Ступенью ниже стоят модели с фотодиодами и одиночными биполярными транзисторами. Для обеспечения работы импульсных приборов применяют оптроны на биполярных, либо полевых транзисторах, поскольку там нет необходимости в линейной передаче сигнала. Наконец, фототиристорные оптроны монтируют, чтобы обеспечить гальваническую изоляцию и безопасность эксплуатации устройства.

Интересно по теме: Как проверить стабилитрон.

Применение

Существует множество сфер, в которых необходимо использование оптронов. Такая широта применения обусловлена тем, что они являются элементами, обладающими множеством различных свойств и на каждое их качество приходится отдельная сфера применения.

  • Фиксация механического воздействия (применяются устройства, оснащённые оптическим каналом открытого типа, который можно перекрыть (оказать механическое воздействие), а значит, само устройство можно использовать как сенсор): Детекторы наличия (выявление наличия/отсутствия бумажных листов в принтере);
  • Детекторы конечной (начальной) точки;
  • Счётчики;
  • Дискретные спидометры.
  • Гальваническая изоляция (использование оптронов позволяет передавать сигнал не связанный с напряжением, также с их помощью обеспечивается бесконтактное управление и защита), которая может обеспечиваться:
      Оптопарой (в большинстве случаев применяется как информационный передатчик);
  • Оптореле (более прочего подходит для управления сигнальными и силовыми цепями).
  • Будет интересно➡ Как работает диод с барьером Шоттки

    Использование транзисторных, либо интегральных оптопар особенно актуально, если требуется обеспечить гальваническую изоляцию в сигнальной цепи или цепи с незначительным управляющим током. Роль элемента управления могут выполнять трёхэлектродные полупроводниковые приборы, схемы, управляющие дискретными сигналами, а также цепи с особой специализацией.

    Рейтинг
    ( 2 оценки, среднее 4.5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]