Радиолюбительские схемы | Принципиальные схемы

Многие люди, которые начинают увлекаться изучением электричества и основам проектирования данного раздела инженерных сетей, часто не имеют возможности получить должный практический опыт. В теории они видят одно, а при чтении электронных схем – совсем другое. Для новичков электронные схемы кажутся сложными не только для применения, но и при попытке их расшифровки. Начинать изучение практической части лучше всего со схем, содержащих простейшую электронную базу и примитивные символические изображения. В приведённом ниже материале будут приведены простые электронные схемы с описанием и их основными обозначениями для начинающих.

Детектор скрытой проводки

Индикатор скрытой проводки – это специальное устройство для обнаружения электросети, проложенной в штробах под штукатуркой стены. Без него не обходится даже простой ремонт домашней электропроводки и розеток. Прибор необходим, когда старая проводка в стенах была проложена без исполнительных схем, и определить место её укладки в отсутствие специального прибора невозможно. При выполнении ремонтных работ целостность изоляции скрытой проводки может быть нарушена сверлом или гвоздем. Подобные действия могут вызвать поражение электрическим током, а также вывести из строя всю домашнюю сеть.

Для обнаружения скрытой проводки в большинстве случаев будет достаточно устройства, выполненного из стрелочного или цифрового омметра с полевым транзистором. Корпусом радиоэлемента проводят по участку стены и, если он «видит» проводку, то значения на омметре сразу же меняются. Модифицированный детектор изображен на схеме ниже. Для его изготовления нужны:

  • Батарейка;
  • Светодиод для индикации;
  • Транзистор;
  • Резисторы на 1 Мом, 100 кОм, 330 Ом и 220 Ом;
  • Переключатель для начала в работы.

Автоматический регулятор оборотов кулера

Это устройство будет полезным как для простых людей, так и для специалистов по ремонту и обслуживанию ПК. Зачастую производители комплектующих для компьютерной техники подключают питание кулера, охлаждающего процессор или материнскую плату, напрямую. Из-за этого устройство непрерывно вращается на максимальной скорости, несмотря на то, что ПК бездействует. Установив самодельный автоматический регулятор, можно не беспокоиться о температуре процессора, ведь датчик будет включать охлаждение автоматически, когда это действительно необходимо.

Вам это будет интересно Особенности осциллографа С1-67

Регулятор оборотов не только увеличит срок службы кулера, но и снизит громкость шумов в помещении. Сделать его можно на основе двух транзисторов, резистора и термистора.

Беспроводной светодиод

Этот примитивный прибор не имеет какой-либо практической ценности, но способен удивить далеких от электроники людей. Он представляет собой светодиод, который начинает светиться, будучи не подключенным к источнику питания.

Схема основана на одном транзисторе, который является практически полноценным генератором тока высокой частоты. Индуктор представлен в виде обычной проволоки, которая согнута в форме кольца. У светодиода имеется приемная петля, получающая на некотором расстоянии от индуктора электрический сигнал и заставляющая лампочку гореть.

Для схемы понадобятся:

  • 6 пальчиковых батареек;
  • Светодиод;
  • Транзистор (БФ494);
  • Конденсатор на 0.1 мкФ;
  • Резистор на 33 кОм;
  • Индуктор 330 мкГ;
  • Провода.

Радиолюбительские схемы | Принципиальные схемы

Здравствуйте уважаемые радиолюбители! Мы рады приветствовать Вас на Нашем сайте. Сайт посвящен радиоэлектронике и всему что с ней связано. Здесь вы сможете найти любые радиоэлектронные схемы с подробным описанием, принципиальной и электрической схемой, техническими характеристиками и технологией изготовления любых устройств. Самые лучшие радиолюбительские схемы и устройства собраны по всему Интернету на нашем сайте. Если слова: паяльник, микросхема, транзистор, резистор или диод — для вас не пустые звуки, то этот сайт для Вас! Будь Вы начинающий радиолюбитель, профессионал со стажем, или же просто современный человек, интересующийся электротехникой и схемотехникой, желающий идти в ногу со временем, в любом случае вы зашли по адресу. А может быть Вы хотите собрать что-то новое для себя, или же отремонтировать или модернизировать имеющеюся у вас аппаратуру, то опять же здесь вы сможете найти нужные электрические схемы радиолюбителей и абсолютно бесплатно скачать их для дальнейшего использования.

Наш сайт является одним из лучших в сфере радиоэлектроники! Весь материал удобно представлен по разделам и категориям, снабжен поиском, имеет удобный и приятный для просмотра интерфейс, что выгодно отличает нас от других подобных ресурсов. Каждый раздел представлен в виде блога, где можно увидеть все статьи данного раздела, начиная с последних добавленных. Каждый раздел, в свою очередь имеет по несколько категорий, являющихся подразделами основного раздела. Категории представлены в виде списка, где можно без труда по названию найти нужную электросхему, схемы радиолюбителей. Ну а если и в этом случае не удалось найти подходящей вам схемы, то попробуйте воспользоваться поиском по сайту, возможно Вы что-то пропустили. Итак, ниже для удобства представлен список разделов и категорий сайта с подробным описанием, которые вы можете видеть в верхнем меню навигации нашего сайта: —

Звукотехника — в данном разделе вы сможете найти любые принципиальные схемы каким бы то ни было образом связанные со звуком. Это и всевозможные усилители УНЧ (ламповые, транзисторные, на специализированных микросхемах НЧ), усилители предварительные, усилители мощности, эквалайзеры, ревербраторы, приставки к музыкальным инструментам, сами музыкальные инструменты, схемы фильтров для колонок (динамики, сабвуферы), магнитолы, светомузыкальные установки и многое другое.

Видеотехника — раздел представлен схемами видеомагнитофонов, видеокамер, телевизоров, всевозможных приставок к телевизору, доработке фото и видео устройств, антеннами для приема TV, и др.

Источники питания — ни одна аппаратура не может работать без источника питания, за исключением устройств работающих на батарейках и аккумуляторах. В разделе представлены всевозможные блоки питания: как то обычные сетевые на базе трансформатора переменного тока, так и всевозможные импульсные и безтрансформаторные ИП. Зарядные устройства для аккумуляторов и сотовых телефонов, фотоаппаратов, радиоприемников, плееров и другой техники.

Измерения — здесь Вы найдете всю информацию касательно измерений в радиолюбительской практике. Описания и схемы различных приборов (амперметры, вольтметры, мультиметры, осциллографы и др), как их собрать самостоятельно и как и в каких случаях использовать.

Датчики и Индикаторы — раздел содержит описания всевозможных датчиков заводского изготовления, и некоторых датчиков, которые можно сделать самостоятельно. Это датчики температуры, ультразвука, движения, давления, оборотов, влажности, поворота, угла наклона, различные сенсоры и акселерометры, и др.

Компьютеры и оргтехника — довольно обширный раздел, содержит электросхемы различных устройств для вашего компьютера, его доработка и усовершенствование, периферия, приставки и т. д.

Спецтехника — этот раздел — находка для шпиона. Содержит множество электрических схем жучков, радиомикрофонов, телефонных ретрансляторов, радиозакладок, направленных микрофонов и т.п. Категория безопасность включает в себя: детекторы жучков и индикаторы поля, индикаторы СВЧ-излучения, различные защитные устройства от подслушки, генераторы шума и глушилки радиосигналов (эфира). Самообороне отведена отдельная категория, она содержит схемы шоккеров и парализаторов, детекторов лжи и др.

Радиоприем и Связь — раздел о связи. Здесь вы найдете принципиальные схемы радиоприемников, передатчиков, трансиверов, конвертеров, антенн для приема и для передачи, линии связи, телекоммуникации и т. д. и т. п.

Телефония — раздел посвящен телекоммуникациям. Все схемы и приставки к телефонам вы найдете здесь. Фиксированная связь, сотовые телефоны (стандарта GSM, CDMA, UMTS, HSDPA wi-fi, wireless, GPRS), спутниковые телефоны и связь и др.

Начинающим — раздел для начинающих радиолюбителей. Основы схемотехники и радиоэлектроники, основные понятия, мультивибраторы, схемы включения транзисторов, усилителей, детекторных приемников, приемников прямого усиления, супергетеродины, различные технологии изготовления печатных плат, пайки, травления, сборки, настройки аппаратуры, полезные советы и т. д.

Электроника в быту — здесь собраны радиолюбительские схемы устройств бытового назначения: акустические выключатели, доработка утюга, регуляторы освещения, аквариумные таймеры и терморегуляторы, охранные устройства, металлоискатели, медицинская техника и другая бытовая техника.

Электроника за рулем — здесь вы найдете принципиальные схемы сигнализаций и охранных устройств для автомобилей, описания и схемы инжекторов, радиолюбительские схемы для автомобиля, схемы зарядных устройств для аккумулятора, электронное зажигание и многое другое.

Автоматика — здесь вы найдете принципиальные схемы автоматических устройств как для быта, так и для производства. Это всевозможные таймеры, фотодатчики, автоматы включения освещения, реле времени и др.

Arduino — раздел содержит радиолюбительские схемы и конструкции выполненные на базе микроконтроллеров Ардуино. Приведены описания устройств, принципиальные схемы с фотографиями и программные коды (скетчи) для среды Arduino IDE.

Справочники — раздел содержит справочники резисторов, транзисторов, конденсаторов, диодов, индуктивностей, интегральных усилителей, стабилитронов, электронных ламп. Кодовые и цветовые маркировки, допуски, отечественные и зарубежные транзисторы и микросхемы и их аналоги, и др.

Сайт Схемы радиолюбителей постоянно развивается и дополняется новыми материалами, что не может не радовать. С каждым днем схем становится все больше, появляются новые современные решения на новейшей элементной базе ранее известных устройств и новые революционные приборы и техника, о которых раньше можно было только мечтать. Поэтому мы советуем почаще заходить на наш сайт, чтобы быть в курсе событий.

Простейший инвертер без транзисторов

Как известно из теоретического курса физики, инвертер преобразует постоянный электрический ток в переменный. Примечательно то, что в большинстве случаев при сборке такого прибора вполне можно обойтись без пайки. Достаточно соединить все контакты простой скруткой. Инвертер, конечно, будет недолговечным, так как реле рано или поздно выйдет из строя, но купить его снова не составит больших проблем. Иногда можно даже найти ненужный переключатель от старого прибора или выпаять его самостоятельно.

Важно! Процесс создания инвертера поможет понять принцип работы постоянного и переменного тока, конвертации одного типа в другой.

Для прибора понадобятся:

  • Трансформатор от радиоприемника, с обмоткой на 220 и 12 Вольт;
  • Реле на 12 Вольт;
  • Провода для соединения деталей;
  • Нагрузка на схему в виде обычной лампочки.

Схема простого металлоискателя

Самые простые электронные схемы базируются на одной микросхеме, в случае этой на TDA0161 – специализированном изделии для датчиков на основе индукции. На основе таких собирают детекторы металла, реагирующие при приближении к индукционному датчику.

Такие в некоторых случаях стоят на заводских проходных.

Детали для его сборки можно найти в магазине радиозапчастей или на алиэкспрессе. В данной схеме металлодетектр издает звук только тогда, когда обнаружит металл. Микросхема работает в диапазоне от 3,5 до 15 вольт, при поиске потребляет ток около 1 мА, в сигнальном режиме 8-12 мА, при рабочей частоте 8-10 кГц.

Запитать устройство можно с помощью телефонного аккумулятора. Также для металлоискателя понадобится «рабочий орган» в виде катушки на 140-150 витков медной проволоки, диаметром 5-7 см. При этом чувствительность прямо зависит от диаметра катушки – чем больше охват, тем чувствительнее.

Аппарат должен работать сразу после сборки, единственное в чем нуждается – в калибровке порога срабатывания переменным резистором.

Автоматический выключатель

Схема аппарата крайне проста, но очень надежна. Принцип работы выключателя основан на работе конденсаторе. Когда происходит нажатие на кнопку, загорается светодиод или лампа. Когда конденсатор будет полностью разряжен, источник света погаснет. Принцип работы следующий: при нажатии кнопки с возвратом происходит зарядка конденсатора, и он превращается в «питательный» элемент. Когда выключатель разомкнет контакт, радиоэлемент будет разряжаться и питать собой цепь, в которой установлена лампа.

Вам это будет интересно Периодичность замены электросчетчика

Важно! Так как конденсатор не может вечно держать заряд, то свет рано или поздно погаснет. Когда это произойдет – сказать сложно, так как все зависит от характеристик радиоэлементов, используемых в приборе.

Полезно такое устройство будет, например, в погребе или техническом подполье. Человек нажимает кнопку, берет необходимые ему вещи и, чтобы не тянуться к выключателю с грузом в руках, просто выходит из подвала. Когда конденсатор полностью разрядится, лампочка потухнет.

sxemy-podnial.net

Предлагаю вашему вниманию плод моих шестилетних поисков. Первые потуги в реализации идеи выключателя освещения были начаты в 2013 году. Микросхем TTP223 и C005 я тогда ещё не знал (да и не было их ещё, наверное), поэтому я экспериментировал с кнопочным псевдосенсором на моей любимой микросхеме К561ЛН2. Так же не было у меня ещё БКВП — блока автономного оптотиристорного коммутатора нагрузки с вампирным питанием внешних устройств. Была только идея и немного энтузиазма (почему немного, да потому что работа у меня командировочная, с выездом из дома на несколько месяцев, а там даже особых идей не возникает из-за напряжённого рабочего времени). Идея была таковой – заменить выключатель освещения сенсором (так как сенсора тоже не было, то – кнопочным псевдосенсором) с автоотключением через несколько часов. Ну, это для любителей забывать выключить свет, которые легли нечаянно поспать (к коим, и я иногда отношусь). При этом выключатель должен был «моргнуть» светом (спящий не увидит и не отреагирует), когда подойдёт время таймера отключения, и по прошествии примерно двух минут, выключить освещение, если никто никак не отреагирует на предупреждение. Если во время этих двух минут, кто-либо «стрельнет» пультом ДУ телевизора (или хлопнет в ладоши, всё зависит от применяемого типа сенсора), и выключатель «услышит» этот сигнал, то в ответ «моргнёт» светом и сбросит таймер отключения. Вот, пожалуй, и вся работа выключателя освещения. Да и ещё – вся схема должна была бы вместиться в монтажную коробку выключателя. К этой идее я периодически возвращался с попеременным успехом. Скажем так – отрабатывал узлы.

Так появился БКВП. Ранее использовал ключевым элементом высоковольтные транзисторы, какие мог себе позволить – 2N13003. И они нормально работали с лампами накаливания до 40 ватт. Но, сгорали, как только подключал светодиодные лампы. Тиристор решил проблемы.

Долго «изобретал» схему электронного уха. Но после нескольких испытаний, мне указали, что «такие звуки» не всем нравятся. Поэтому перешёл на ИК диапазон частот. Ведь пульты ДУ есть почти у всех и схема сразу сократилась до интегрального приёмника ИК диапазона. Схема «электронного уха» тоже имеется.

Пожалуй, самым не проверенным был RC-таймер на rобр.д — обратном сопротивлении диода по постоянному току. Только такой таймер, мне представлялся самым простым и перспективным в этой идее. Ведь, для схемы одного таймера, в принципе, нужно лишь три детали – диод, конденсатор и один логический элемент НЕ. И главное то, что по сути, это двухполюсник – подал на вход включающее напряжение и жди когда на выходе появится задержанный сигнал.

И вот когда появились TTP223 и C005 я понял, что вскоре всё сложится.

Первая схема (смотрите рис.1), которую я хочу предложить вашему вниманию, является, скажем так – самой большой. Так как в ней применено два таймера C005. Основной таймер, это микросхема DD4, настроенная, примерно, на четыре часа и таймер «отключения» на DD3, настроен на 2 минуты.

Как работает. При подаче сетевого напряжения на клеммы питания, нужно подождать несколько секунд, пока зарядится конденсатор C9 в БКВП, ведь он установлен большой ёмкости. Когда напряжение питания появится, то микросхема сенсора DD2 будет запитана, через открытый ключевой транзистор VT5, последний открывает ток базового резистора R20. Схема находится в дежурном режиме и ток потребляет только микросхема сенсора. Микросхема DD1 находится в статическом режиме и практически не потребляет тока.

Сразу скажу, что конденсатор стоящий возле выводов питания микросхемы сенсора ёмкостью 0,1 микрофарада стоит на плате рядом с последней, так как в этой конструкции я применял модуль-плату сенсора на TTP223, потому что, кроме микросхемы она содержит и сенсор E1. Да, светодиод с этой платы снят, за ненадобностью.

Так как вывод 4 микросхемы DD2 никуда не подключен, то сенсор работает в триггерном режиме. Если прикоснуться к сенсору E1, то на выводе 1 микросхемы появится лог. 1, которая запустит две схемы — схему включения питания основного таймера, и схему питания светодиодов индикации включения и оптрона U1.1, который запустит тиристор VD6. Светодиод HL2 погаснет, а лампа LH1 загорится.

Когда таймер DD4 досчитает время до конца, то на его выводе 3 появится лог. 1, и через логические элементы DD1.5 и DD1.6 будет запущен таймер DD3, который начнёт отсчёт своих двух минут. С выхода DD1.5 лог. 0 будет подан на левый вывод конденсатора C5, и пока он будет заряжаться через резистор R6, лог. 1 с выхода DD1.1 через открытый диод VD3 откроет транзистор VT4, что вызовет «моргание» света примерно на пол секунды. Так же этот лог. 0 с выхода DD1.5 откроет ключ VT2 питания внешнего сенсора. Это напряжение запитает так же индикаторный светодиод HL1 (см. рис. 2) на плате внешнего сенсора. Он установлен для визуализации включения внешнего сенсора.

Если внешний сенсор не сработает, то через две минуты на выводе 3 таймера DD3 появится лог. 1, которая откроет транзистор VT8, а он уже практически закроет транзистор VT5. Микросхема сенсора DD2 будет обесточена и всё чем она управляла закроется. Пропадёт так же и напряжение питания на микросхеме таймера DD3. Транзистор VT8 закроется тоже, и опять напряжение питания появится на сенсоре DD2. Вся схема перейдёт в ждущий режим.

Но, если, в последние две минуты, кто-то направит любой пульт ДУ (главное, чтобы совпадали частоты кодировки импульсов) в сторону ИК-приёмника U1 (см. на рис. 2 б) и нажмёт на любую кнопку, то несколько импульсов попадут на умножитель напряжения (конденсаторы C1, C3 и диоды VD1, VD2), которое будет приложено к базе транзистора VT1. Он откроется и подключит левый вывод конденсатора C4 к общему проводу, и пока последний будет заряжаться через резистор R7, лог. 1 с выхода DD1.2 через открытый диод VD4 откроет транзистор VT4, что вызовет «моргание» света примерно на пол секунды. Так же эта лог. 1 с выхода DD1.2 откроет ключ VT3, который прервёт цепочку питания основного таймера DD4, на те же пол секунды. И этого времени хватит, чтобы обнулить его выход. Таймер DD4 начнёт считать заново свои четыре часа.

Если внешним сенсором будет стоять «электронное ухо», то в ответ на «моргание» нужно произвести громкий резкий звук, коим может быть хлопок в ладоши или свист. В подтверждение принятия сигнала выключатель «моргнёт» светом и погаснет светодиод HL1 на плате внешнего сенсора.

На рисунке 2 представлены схемы двух внешних активных сенсоров – звуковой и ИК — диапазона. Звуковой сенсор (рис. 2 а), это переделанная плата Звукового включателя светодиодных и ламп накаливания – с неё сняты не нужные детали (те, что остались, помечены звёздочками со своими позиционными номерами). И добавлен световой индикатор HL1, который показывает, что действительно сработал основной таймер. Так же добавлен трёхжильный кабель со своим разъёмом XR1.

Приёмник ИК – диапазона (рис. 2 б) также оснащён световым индикатором HL1 сработки основного таймера. К нему так же нужно подключить трёхжильный кабель со своим разъёмом XR2. Для чего нужны кабели? Дело в том, что как правило, выключатель любого помещения, находится вне этого помещения. И что бы всё работало хорошо, внешние сенсоры должны находиться в том помещении которое освещается. И нужно их расположить так, чтобы вы хорошо видели светящийся светодиод из основного места пребывания в комнате (к примеру, между стеной и наличником двери). Из двух сенсоров, нужно выбрать один и из схемы убрать ненужные детали. Так же, на рис. 2 в изображён кнопочный «сенсор», может кому-то такой вариант ближе по реализации. Плату с кнопкой и светодиодом нужно поставить близко к месту вашей постоянной дислокации.

Детали. В этих конструкциях могут стоять любые маломощные транзисторы соответствующей структуры с коэффициентом усиления не менее 120, а транзистора VT7 не менее 150. Номиналы резисторов и конденсаторов могут изменяться в широких пределах. Только несколько деталей имеют ограничения в номиналах. Конденсаторы C3 и C9 – ёмкости должны быть не ниже указанных на схеме. Резисторы R15 и R16 подобрать таких номиналов, которые вам нужны по времени таймеров. Если вам не нужна индикация включения, то HL1 и R14 можно исключить. Да и ещё – дорожки печатной платы в цепи питания должны выдерживать нужную мощность нагрузки. А также, должна быть обеспечено малая потеря тока в цепи запитывания светодиода оптрона.

На рисунке 3 изображен второй вариант выключателя с автоотключением – это «облегчённая» схема на один интегральный таймер C005. Его заменил RdC – таймер на диоде VD1, конденсаторе C3 и логическом элементе DD1.1. Диод VD1 нужно подобрать, что бы при конденсаторе ёмкостью 0,1 микрофарада таймер выдал время 27-33 секунды. Тогда при номинальной ёмкости C3 таймер выдаст примерно нужное время – 2-2,5 минуты.

Эта схема, практически работает аналогично предыдущей, только отличие в ключе питания микросхемы сенсора DD2. Здесь транзистор VT5 другой структуры. Всё поменялось из-за изменённой схемы таймера отключения. Когда ключ VT2 питания внешнего сенсора выключен, то катод диода VD1 находится на общем проводе. Конденсатор C3 разряжен и на выводе 3 логического элемента DD1.1 присутствует лог. 0. Соответственно на выводе 4 лог. 1, которая открывает транзистор VT6 через базовый резистор R8. А уже VT6 через базовый резистор R20 открывает ключ питания микросхемы сенсора VT5. Когда же сработает основной таймер DD3 и откроет ключ VT2 питания внешнего сенсора, ток через диод VD1 начнёт заряжать конденсатор C3. И когда RdC – таймер сработает, то на выводе 4 DD1.1 появится лог. 0, который последовательно закроет VT6, VT5 и отключит питание сенсора. И всё вернётся к дежурному режиму.

На рисунке 4 изображен третий вариант выключателя с автоотключением – это ещё более «облегчённая» схема, здесь совсем нет интегральных таймеров C005. В этом варианте, в качестве таймеров используются два RdC – таймера. Логика работы совершенно не изменилась. Основной RdC – таймер: диод VD6, конденсатор C8 и логический элемент DD1.4, а также триггер Шмитта на логических элементах DD1.5, DD1.6 и резисторе R17. Триггер Шмитта нужен для правильной работы индикатора включения индикации.

На рисунке 5 изображён четвёртый вариант выключателя с автоотключением. Это схема, так сказать — alma mater всех этих схем. С этого варианта я начинал. Здесь нет сенсора на TTP223 и интегральных таймеров C005. Только кнопка и два RdC – таймера. Логика работы та же. В первоначальном варианте не было триггера Шмитта и по-другому организовывалась индикация «моргания». Схемное построение кнопочного выключателя описано в [1].

На рисунке 6 изображён пятый вариант выключателя с автоотключением. Эта схема родилась благодаря триггеру Шмитта. На предыдущих двух схемах, триггер Шмитта представляет собой классическую схемотехнику внутренности микросхемы К561ТЛ1 [2]. Тем более, что каждый логический элемент этой микросхемы имеет два входа – И-НЕ. Благодаря этому и родилась новая, ещё более облегчённая схема.

На рисунке 7 изображен вариант двойного выключателя с автоотключением. Такие выключатели, как правило, мы ставим в зале, на большую многорожковую люстру. Для примера, я объединил два выключателя из схем на рисунке 3 с «удвоенным» симисторным БКВП х 2.

Настройка. Если монтаж выполнен правильно, то единственной настройкой, кроме времени работы таймеров, будет настройка напряжения питания схем. Оно должно быть выше 2,6 вольт (при таком напряжении уже нормально работают логические микросхемы 561 серии). Если напряжение будет ниже, или не будет работать схема (из-за питания), то тогда, первым делом повысьте напряжение, подключая параллельно аноду и катоду тиристора (или анодам симистора) добавочные резисторы, до получения нужного. Если, при включении нагрузки не будет полностью погасать светодиод индикации готовности работы схемы (а это означает, что тиристор (симистор) не полностью открылся), то нужно увеличить ёмкость конденсатора в БКВП или уменьшить номинал резистора в цепи управляющего электрода тиристора (симистора), до полного погасания светодиода.

P.S.: Да, схемы получились великоваты, хотя и работоспособны. И, наверное, никто и не решится их повторить, я-то уж точно. Почему? Да потому, что время не то. Лет бы 15-20 назад, точно сделал бы. Хотя бы, для того, чтобы у меня было, а у вас нет. Почему я не буду себе делать? Да, потому, что собираюсь, делать по другой концепции, которую я описывал в своих идеях, в материале — «Аварийное бесперебойное освещение в доме». В выключателях будут только сенсоры и световая индикация (примерно как в предыдущем материале – «Выключатель освещения и вытяжки душевой кабины»), а вся остальная электроника с аккумулятором в другом блоке.

Вот, не давно, погорел распределительный трансформатор в квартале, так пол дня сидели все без света. И хорошо, что быстро сделали. А если бы день –два? Как жить без света в современном мире? Да и живу я в ремонте квартиры уже много лет. И могу себе позволить переделать проводку по своему усмотрению. А тот, у кого в квартире уже сделан красивый ремонт, может, я думаю, легко повторить эти схемы, если применит SMD радиодетали.

Внимание!

Все эти конструкции находятся в гальванической связи с сетью, с высоким напряжением! Будьте предельно осторожны при макетировании и испытаниях! Обеспечивайте этим конструкциям хорошую изоляцию, с целью безопасной эксплуатации!

Литература:

  1. Популярные цифровые микросхемы/ В.Л.Шило: Справочник. — Челябинск: Металлургия, Челябинское отделение, 1989. — 352 с.: ил. — (Массовая радиобиблиотека. Вып. 1111). 1988 г. стр.213.
  2. Популярные цифровые микросхемы/ В.Л.Шило: Справочник. — Челябинск: Металлургия, Челябинское отделение, 1989. — 352 с.: ил. — (Массовая радиобиблиотека. Вып. 1111). 1988 г. стр.202.

Лабораторный блок питания своими руками

БП – полезный прибор для любого человека, занимающегося электроникой. Устройство способно регулировать выходное напряжение и ограничивать ток до тех параметров, которые будут необходимы для корректной работы той или иной схемы.

Важно! Купить БП можно в любом магазине электроники, но гораздо выгоднее и полезнее будет изготовить его своими руками с использованием простой схемы.

Схема состоит из следующих деталей:

  • Блока питания из трансформатора, диодного моста и конденсатора;
  • Регулятора на транзисторе или стабилитроне;
  • Клемм и радиатора;
  • Светодиода;
  • Вольтметра;
  • Резисторов.

Цветомузыка своими руками

Иногда помимо бодрого ритма хочется, чтобы в такт еще что-то мигало и переливалось. Можно сходить в магазин и купить светоэффекты, что как правило обычные любители музыки и делают. А иногда возникает соблазн собрать самому простые электрические схемы для себя ли, или в подарок папе.

Сперва может показаться, что задача нетривиальна и непроста, и на самом деле тут нужно уметь не только паять, но и печатать платы. Однако с трудом и упорством даже в неопытных руках возможно все. Погнали!

Акустический моргалик

Принцип работы акустических приборов всегда связан с улавливанием звуков и голоса человека с помощью микрофона. Попадая на чувствительные элементы динамика, звуковые волны конвертируются в электрический сигнал, который заставляет светодиоды на плате «моргать». Схема состоит из следующих радиоэлементов:

  • Двух транзисторов КТ315Б;
  • Резисторов (3 штуки) на 4700 Ом, 1 МоМб, 10 кОм;
  • Микрофона;
  • Конденсаторов полярного типа (2 штуки) на 47 и 1 мкФ;
  • Светодиодов на 3 Вольта в размере 6 штук.

Вам это будет интересно Учет электроэнергии: схема

Функционирует прибор следующим образом: увеличивающий частоту звуковых колебаний усилитель, при попадании на него звуковых волн, начинает менять свое сопротивление. Переменный сигнал проходит через конденсатор и поступает на транзистор, открывая его. Ток достигает коллектора и поступает на второй элемент, который также открывается и лампочки начинают «моргать».

Реле времени для фотопечати

Исходя из названия, реле времени позволяет управлять включением и выключением приборов в автоматическом режиме с помощью временных интервалов. Самый простой вариант можно собрать на транзисторах (из восьми элементов).

Важно! Такие реле активно применяются в системе «умный дом» для автоматизации осветительных приборов.

Состоит устройство из следующих элементов:

  • Резисторы (2 штуки) на 100 Ом и 2.2 мОм;
  • Транзистор биполярного типа КТ937А;
  • Реле для переключения нагрузки;
  • Резистор на 820 Ом;
  • Конденсатор на 3300 мкФ;
  • Диод выпрямительного типа;
  • Переключатель для запуска отсчета времени.

В статье были приведены описания и подробно разобраны простые электрические схемы для детей и начинающих радиолюбителей. Они помогут понять основные принципы электроники, базовые обозначения радиоэлементов на схемах и, в конечном итоге, применить свои теоретические знания на практике.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]