Конструкция, технические параметры и разновидности ламп накаливания

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы — так появились галогеновые лампы. Вольфрам — термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им — неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит — токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород — важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы — платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день — маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока — до 40 %.

Вспомните учебный курс — еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Устройство лампы с нитью накала

Еще до недавнего времени лампы накаливания (ЛН) использовались повсеместно и сейчас их все еще покупают — они могут работать как «во всю силу», ярко освещая помещение, так и снижать яркость с помощью диммера. Из-за распространенности традиционных лампочек среди населения с их конструкционными особенностями знакомы многие.

Причем часто приходилось «знакомиться» по причине выхода источника света из строя: перегорала вольфрамовая нить, лопалось стекло или колба вылетала из цоколя.

Некоторые производители использовали более надежные и проверенные материалы и относились к выпуску лампочек накаливания настолько ответственно, что их продукция работает уже на протяжении нескольких десятилетий. Но это скорее исключение, чем правило – сегодня никаких гарантий на продолжительный срок эксплуатации не дается.

Главный действующий элемент – так называемое тело накала, закрепленное на держателях и присоединенное к электродам. В момент подключения электроэнергии через него проходит напряжение, вызывающее одновременно нагрев и свечение. Чтобы излучение стало видимым, температура нагрева должна достигнуть 570 °С.

Наиболее устойчивым к высокой температуре металлом признан вольфрам. Он начинает плавиться при нагреве до 3422 °С. Чтобы максимально увеличить площадь излучения, но сократить объем тела накала внутри стеклянной колбы, его скручивают в спираль.

Для защиты вольфрама от процесса окисления, характерного для металлов, из колбы откачивают воздух и заменяют его вакуумом или газом (криптоном, аргоном и пр.). Технология наполнения вакуумом устарела, для бытовых ламп чаще всего применяют смесь азота и аргона или криптон.

В результате тестирования была выявлена минимальная продолжительность горения лампы – 1 тысяча часов. Но, учитывая случайные причины, выводящие приборы из строя раньше времени, допускается, что нормативы распространяются лишь на 50% продукции из каждой партии. Время работы второй половины может быть больше или меньше – в зависимости от условий использования.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды — выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение — защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Нить накала

По форме нить накаливания может быть разной — выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже — ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны — до 75 Вт световая отдача увеличивается, при превышении — снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель — у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Световой поток

Прямое назначение любого светового прибора – освещение. В лампе накаливания оно создается путем преобразования тепловой энергии в световой поток.

Определение и правила измерения

Световой поток — величина, которая характеризует световую мощность (световая энергия, которая переносится через некоторую поверхность за единицу времени излучением) видимого излучения в потоке этого излучения, то есть по производимому на глаз человека световому ощущению.

Чувствительность этого ощущения можно определить по кривой спектральной эффективности, которая утверждена МКО. Единицей измерения светового потока в Международной системе единиц является люмен (лм или lm), который рассчитывается по формуле:

1 лм = 1 кд*ср (1 лк × м2), где:

  • кд – кандела;
  • телесный угол, 1 стерадиан.

Энергия в пучке света имеет временное и пространственное распределение. Источники, излучающие световой поток, различают по распределению цветов спектра:

  • линейчатый спектр (отдельные линии);
  • полосатый спектр (рядом расположенные разграниченные линии);
  • сплошной спектр.

Спектральная плотность светового пучка характеризуется распределением лучистого потока по спектру. Измеряется в Вт/нм.

Соотношение с мощностью элемента

Возрастание светового потока напрямую зависит от мощности лампы. На графике (см. рисунок ниже) прослеживается четкая зависимость возрастания яркости пропорционально возрастанию мощности.

Лампа накаливания, ВтСветовой поток (лм)Напряжение на лампе, В
4061012
4057036
40340230
40400240
6095536
60735225
60645230
60711235
60670240
75940220
75960225
100158136
1001381225
1001201230
1001361235
1502151230
1502181240
2002951225
2003051230
3003361225
3004801230
3004851235
5008401220
75013100220
100018700220

Лампы накаливания одинаковой мощности могут излучать разный световой поток. Чем выше напряжение, тем выше значение светового потока.

Сравнение с другими типами ламп

Сравнительный анализ светового потока ламп накаливания с более совершенными люминесцентными и светодиодными лампочками позволяет оценить его эффективность.
Таблица – Сравнение лампочки накаливания со светодиодной и люминесцентной (энергосберегающей лампочкой)

Лампа накаливания, мощность, ВтСветодиодная лампа, мощность, ВтЛюминесцентная лампа, мощность, ВтСветовой поток, Лм (приблизительное значение)
202-34-7251
403-510-14399
607-1114-16701
7511-1319-21899
10013-1625-351205
15016-2141-551805
20021-3059-802505

Виды

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение — в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория — изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения — 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.

  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, — к примеру, кинопроекционная или медицинская техника.

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные — подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе — ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая — для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая — для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности — если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара — сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

Основные характеристики ламп накаливания

Цоколь

Тело накала лампы

Тело накала ЛН выполняется из наиболее тугоплавкого металла – вольфрама, температура плавления которого равна 3653 К. Чем короче и компактнее тело накала и чем больше его диаметр, тем на большую температуру нагрева оно рассчитано, и тем экономичнее будет лампа.

Для увеличения компактности чаще используется спиральное (моноспираль) или биспиральное (двойная спираль) тело накала. Для ЛН, работающих при воздействии вибрации (транспортные системы), используется прямолинейное тело накала.

Сопротивления спирали ЛН в холодном и разогретом (рабочем) состоянии существенно различаются. Так, у ЛН мощностью 100 Вт они соответственно равны 40 и 490 Ом. Соответственно меняются и токи, протекающие через лампу. Можно считать, что пусковой ток ЛН примерно в 12,5 раз превышает ток рабочего режима. Это приводит к тому, что вероятность отказа ЛН в момент включения резко возрастает.

Наибольшее распространение имеет разработанный Эдисоном (буква Е в обозначении) резьбовой цоколь разного диаметра (Е27 – для ЛН мощностью 25…200 Вт, Е40 – «голиаф» – для ЛН мощностью более 200 Вт, Е14 – миньон» – для маломощных ЛН).

Штифтовой цоколь используется в транспортных системах, так как не позволяет лампе выкручиваться из патрона.

Фокусирующий цоколь, позволяющий устанавливать лампу в строго определенном положении, применяется в оптических системах.

Электрические характеристики

1. Номинальное напряжение ЛН общего освещения, как правило, равно 220 В. Напряжение 127 В используется намного реже, так как основной системой напряжений в настоящее время является 380/220 В. Для местного и переносного освещения используются ЛН с номинальным напряжением 36, 12, 6 В.

Так как продолжительность горения ЛН резко снижается при повышении подводимого напряжения, выпускаются ЛН, предназначенные для работы в сетях с повышенным напряжением. Для них указывается диапазон рекомендуемых напряжений: 215…225 В, 220…230 В, 230…240 В, 125…135 В. У этих ламп продолжительность горения при напряжении, совпадающем с серединой диапазона (его называют расчетным), равна продолжительности горения обычной лампы при напряжении 220 В. При напряжении, совпадающем с левой границей диапазона, продолжительность горения этих ЛН возрастает в 2,5…3,5 раза, но уменьшается их мощность, световой поток (примерно на 25%) и световая отдача. Лампы с более высокой правой границей номинального напряжения рекомендуется использовать при повышенном (по сравнению с номинальным) напряжении сети. Их же целесообразно применять с целью продления периода горения ламп в сетях с номинальным напряжением, особенно при невысоких значениях требуемой освещенности.

2. Номинальная мощность Рн ЛН меняется в широком диапазоне от долей ватта до 20 кВт, так как принципиальных препятствий для изготовления ЛН любой мощности нет. Так как изготовить ЛН в полном соответствии с указанной для них номинальной мощностью трудно, допускается отклонение фактической мощности от номинальной на ± 10 %.

Светотехнические характеристики

1. Номинальный световой поток Фнуказывается в справочниках. По мере эксплуатации ЛН он постепенно уменьшается из-за испарения вольфрама с тела накала, которое приводит к уменьшению мощности лампы и загрязнению колбы. Через 750 ч горения ЛН её световой поток уменьшается в среднем на 15 %.

2. Максимальная сила света IМАК задается для ЛН относительно редко – в основном для ЛН, работающих в однотипных оптических системах, например для автомобильных ЛН. В большинстве случаев максимальная сила света светильника определяется его кривой силы света и может существенно отличаться от максимальной силы света ЛН.

3. Цветовая температура

В излучениях видимого спектра ЛН преобладают оранжево-красные лучи, которые усиливают «тёплые» цветовые тона (коричневые, оранжевые, красные) и ослабляют «холодные» (фиолетовые, голубые, зелёные), что не может обеспечить хорошей цветопередачи. Цветовая температура ЛН лежит в пределах 2500…2700 К.

Экономические и эксплуатационные характеристики

1. Номинальная световая отдача (лм/Вт) – световой поток с единицы мощности – это важнейшая экономическая характеристика ИС, по своему смыслу аналогичная КПД. Поэтому и обозначается она большой греческой буквой эта – Н (маленькая эта – η):

НН = ФН/РН.

Световая отдача тепловых излучателей даже теоретически не может быть больше 89,5 лм/Вт. Для ЛН общего применения световая отдача составляет от 8 до 20 лм/Вт и зависит от температуры нагрева тела накала (рис. 28).

В большей мере тело накала разогрето в газонаполненных ЛН, где испарение вольфрама затруднено. В ЛН с меньшим номинальным напряжениеми с большей номинальной мощностью, тело накала короче, компактнее и имеет больший диаметр. Поэтому оно рассчитано на большую температуру нагрева. Световая отдача лампы накаливания возрастает с уменьшением номинального напряженияи с увеличением номинальной мощности.

Так, световая отдача ЛН мощностью 15 Вт с номинальным напряжени­ем 220 В (В220-15) равна 8 лм/Вт, а у Г127-1000 – 20 лм/Вт.

2. Продолжительность горения τ – продолжительность реального использования лампы, т.е. её ресурс (в отличие от срока службы – календарной продолжительности от начала применения до выхода из строя).

Полная продолжительность горения

– продолжительность горения одной отдельно рассматриваемой лампы резко отличается для разных ЛН и не может служить характеристикой долговечности ИС в целом.

Средняя продолжительность горенияτСР– определяется для партии ламп. За среднюю продолжительность горения принимают (рис. 29) полную продолжительность горения той лампы из испытываемой партии, для которой число перегоревших ламп до нее и после нее одинаково. Так, если испытывается 101 лампа, то это полная продолжительность горения 51-й по счёту перегоревшей лампы. Если испытывается 100 ламп – то средняя продолжительность горения партии равна среднему арифметическому значению между полными продолжительностями горения 50-й и 51-й пе­ре­го­рев­ших ламп.

Средняя продолжительность горения ЛН общего применения составляет 1000 ч при расчётном напряжении.

Гарантийная продолжительность горения

ЛН общего применения равна 700 ч.

Полезная продолжительность горения

– продолжительность горения, в течение которого световой поток упадет не более чем на 30 %. Для ЛН полезная продолжительность горения обычно равна средней, так как среднее значение светового потока за весь период эксплуатации составляет 0,87…0,95 от номинального.

Зависимость характеристик ЛН от напряжения сети

весьма существенна.

Эти зависимости могут быть представлены в виде следующих эмпирических фор­мул:

P/PН = (U/UН)1,58;

H/HН = (U/UН)2,03;

Ф/ФН = (U/UН)3,61;

τ/τН=(U/UН)–(11,2÷14,8) .

Если напряжение в сети возрастёт на 3 %, продолжитель­ность горения ЛН составит 60 % от номинальной. Если напряжение сети снизится на 10 %, на 30 % упадёт световой поток ЛН.

Цоколь

Тело накала лампы

Тело накала ЛН выполняется из наиболее тугоплавкого металла – вольфрама, температура плавления которого равна 3653 К. Чем короче и компактнее тело накала и чем больше его диаметр, тем на большую температуру нагрева оно рассчитано, и тем экономичнее будет лампа.

Для увеличения компактности чаще используется спиральное (моноспираль) или биспиральное (двойная спираль) тело накала. Для ЛН, работающих при воздействии вибрации (транспортные системы), используется прямолинейное тело накала.

Сопротивления спирали ЛН в холодном и разогретом (рабочем) состоянии существенно различаются. Так, у ЛН мощностью 100 Вт они соответственно равны 40 и 490 Ом. Соответственно меняются и токи, протекающие через лампу. Можно считать, что пусковой ток ЛН примерно в 12,5 раз превышает ток рабочего режима. Это приводит к тому, что вероятность отказа ЛН в момент включения резко возрастает.

Наибольшее распространение имеет разработанный Эдисоном (буква Е в обозначении) резьбовой цоколь разного диаметра (Е27 – для ЛН мощностью 25…200 Вт, Е40 – «голиаф» – для ЛН мощностью более 200 Вт, Е14 – миньон» – для маломощных ЛН).

Штифтовой цоколь используется в транспортных системах, так как не позволяет лампе выкручиваться из патрона.

Фокусирующий цоколь, позволяющий устанавливать лампу в строго определенном положении, применяется в оптических системах.

Электрические характеристики

1. Номинальное напряжение ЛН общего освещения, как правило, равно 220 В. Напряжение 127 В используется намного реже, так как основной системой напряжений в настоящее время является 380/220 В. Для местного и переносного освещения используются ЛН с номинальным напряжением 36, 12, 6 В.

Так как продолжительность горения ЛН резко снижается при повышении подводимого напряжения, выпускаются ЛН, предназначенные для работы в сетях с повышенным напряжением. Для них указывается диапазон рекомендуемых напряжений: 215…225 В, 220…230 В, 230…240 В, 125…135 В. У этих ламп продолжительность горения при напряжении, совпадающем с серединой диапазона (его называют расчетным), равна продолжительности горения обычной лампы при напряжении 220 В. При напряжении, совпадающем с левой границей диапазона, продолжительность горения этих ЛН возрастает в 2,5…3,5 раза, но уменьшается их мощность, световой поток (примерно на 25%) и световая отдача. Лампы с более высокой правой границей номинального напряжения рекомендуется использовать при повышенном (по сравнению с номинальным) напряжении сети. Их же целесообразно применять с целью продления периода горения ламп в сетях с номинальным напряжением, особенно при невысоких значениях требуемой освещенности.

2. Номинальная мощность Рн ЛН меняется в широком диапазоне от долей ватта до 20 кВт, так как принципиальных препятствий для изготовления ЛН любой мощности нет. Так как изготовить ЛН в полном соответствии с указанной для них номинальной мощностью трудно, допускается отклонение фактической мощности от номинальной на ± 10 %.

Светотехнические характеристики

1. Номинальный световой поток Фнуказывается в справочниках. По мере эксплуатации ЛН он постепенно уменьшается из-за испарения вольфрама с тела накала, которое приводит к уменьшению мощности лампы и загрязнению колбы. Через 750 ч горения ЛН её световой поток уменьшается в среднем на 15 %.

2. Максимальная сила света IМАК задается для ЛН относительно редко – в основном для ЛН, работающих в однотипных оптических системах, например для автомобильных ЛН. В большинстве случаев максимальная сила света светильника определяется его кривой силы света и может существенно отличаться от максимальной силы света ЛН.

3. Цветовая температура

В излучениях видимого спектра ЛН преобладают оранжево-красные лучи, которые усиливают «тёплые» цветовые тона (коричневые, оранжевые, красные) и ослабляют «холодные» (фиолетовые, голубые, зелёные), что не может обеспечить хорошей цветопередачи. Цветовая температура ЛН лежит в пределах 2500…2700 К.

Экономические и эксплуатационные характеристики

1. Номинальная световая отдача (лм/Вт) – световой поток с единицы мощности – это важнейшая экономическая характеристика ИС, по своему смыслу аналогичная КПД. Поэтому и обозначается она большой греческой буквой эта – Н (маленькая эта – η):

НН = ФН/РН.

Световая отдача тепловых излучателей даже теоретически не может быть больше 89,5 лм/Вт. Для ЛН общего применения световая отдача составляет от 8 до 20 лм/Вт и зависит от температуры нагрева тела накала (рис. 28).

В большей мере тело накала разогрето в газонаполненных ЛН, где испарение вольфрама затруднено. В ЛН с меньшим номинальным напряжениеми с большей номинальной мощностью, тело накала короче, компактнее и имеет больший диаметр. Поэтому оно рассчитано на большую температуру нагрева. Световая отдача лампы накаливания возрастает с уменьшением номинального напряженияи с увеличением номинальной мощности.

Так, световая отдача ЛН мощностью 15 Вт с номинальным напряжени­ем 220 В (В220-15) равна 8 лм/Вт, а у Г127-1000 – 20 лм/Вт.

2. Продолжительность горения τ – продолжительность реального использования лампы, т.е. её ресурс (в отличие от срока службы – календарной продолжительности от начала применения до выхода из строя).

Полная продолжительность горения

– продолжительность горения одной отдельно рассматриваемой лампы резко отличается для разных ЛН и не может служить характеристикой долговечности ИС в целом.

Средняя продолжительность горенияτСР– определяется для партии ламп. За среднюю продолжительность горения принимают (рис. 29) полную продолжительность горения той лампы из испытываемой партии, для которой число перегоревших ламп до нее и после нее одинаково. Так, если испытывается 101 лампа, то это полная продолжительность горения 51-й по счёту перегоревшей лампы. Если испытывается 100 ламп – то средняя продолжительность горения партии равна среднему арифметическому значению между полными продолжительностями горения 50-й и 51-й пе­ре­го­рев­ших ламп.

Средняя продолжительность горения ЛН общего применения составляет 1000 ч при расчётном напряжении.

Гарантийная продолжительность горения

ЛН общего применения равна 700 ч.

Полезная продолжительность горения

– продолжительность горения, в течение которого световой поток упадет не более чем на 30 %. Для ЛН полезная продолжительность горения обычно равна средней, так как среднее значение светового потока за весь период эксплуатации составляет 0,87…0,95 от номинального.

Зависимость характеристик ЛН от напряжения сети

весьма существенна.

Повышение подводимого к ЛН напряжения увеличивает её световой поток, мощность и световую отдачу и резко снижает продолжительность горения (рис. 30).

Эти зависимости могут быть представлены в виде следующих эмпирических фор­мул:

P/PН = (U/UН)1,58;

H/HН = (U/UН)2,03;

Ф/ФН = (U/UН)3,61;

τ/τН=(U/UН)–(11,2÷14,8) .

Если напряжение в сети возрастёт на 3 %, продолжитель­ность горения ЛН составит 60 % от номинальной. Если напряжение сети снизится на 10 %, на 30 % упадёт световой поток ЛН.

КПД

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья — на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД — 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К — в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Достоинства и недостатки

Сравнение отдельных видов светильников накаливания позволит выбрать наиболее подходящий вариант, исходя из того, какая нужна мощность и световая отдача. Но у всех перечисленных видов светильников есть общие достоинства и недостатки:

Плюсы:

  1. Доступная цена. Стоимость многих ламп находится в пределах 2 у. е.;
  2. Быстрое включение и выключение. Это наиболее значимый параметр в сравнении с энергосберегающими лампами с долгим включением;
  3. Маленькие размеры;
  4. Простая замена;
  5. Широкий выбор моделей. Сейчас есть декоративные светильники (свеча, ретро-завиток и другие), классические, матовые, зеркальные и прочие.

Минусы:

  1. Высокая потребляемая мощность;
  2. Негативное воздействие на глаза. В большинстве случаев от него поможет матовая или зеркальная поверхность колбы лампы накаливания;
  3. Низкая защита от перепадов напряжения. Для обеспечения нужного уровня используется блок защиты для лампы накаливания, он подбирается в зависимости от типа;
  4. Короткий эксплуатационный период;
  5. Очень низкий коэффициент полезного действия. Большая часть электрической энергии уходит не на освещение, а на нагрев колбы.

https://www.youtube.com/watch?v=ET-u92BP968

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

Преимущества:

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.

Недостатки:

  • недолговечность — 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача — КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Сферы применения

Лампа накаливания Е27 60 Вт – эталон для большей части осветительных устройств, применяемых как дома, так и в промышленности. В наши дни нетрудно подобрать оптимальный с точки зрения потребителя вариант с точки зрения эффекта, долговечности или затрат.

По сферам использования лампочек накаливания можно обозначить нижеследующие разделы:

  1. Общего назначения. Бытовое, местное и декоративное освещение в самом широком смысле. Поэтому это – наиболее массовая разновидность ламп.
  2. Для местного освещения. Отличаются от первой категории на пониженное напряжение (порядка 12-36 ватт). Нередко устанавливаются в переносные источники света, на различных устройствах — например, станках.
  3. Лампы для иллюминации. Их оборудуют цветными колбами. Как правило, маломощные (10-35 Вт) устройства в основном декоративного, рекламного или художественного оформления. Цветность обеспечивается покрытием внутренней поверхности колбы неорганическим красящим составом, реже окрашивают колбу с внешней стороны.
  4. Зеркальные лампы накаливания. Их отличие заключается в добавлении отражающего слоя на часть колбы изнутри, чтобы фокусировать световой поток в нужном направлении.
  5. Сигнальные лампы. Маломощные источники света с продолжительным рабочим ресурсом для светосигнальных устройств. Постепенно уступают место светодиодным лампам.
  6. Транспортные лампы. Обширная категория устройств, разработанная для использования практически на всех современных видах транспорта. Отличаются высокой прочностью и могут использовать бортовую энергосеть транспорта (6-220 В).
  7. Прожекторные лампы. Отличаются внушительной мощностью (10-60 кВт).
  8. Лампы для оптических устройств. В этот разряд, к примеру, входят очень распространенные еще несколько лет назад лампы для кинопроекторов. Помимо этого, применяются в измерительных устройствах, в медицинской аппаратуре и т.д.
Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]