Эксперимент № 3. ШИМ. Управление яркостью светодиода


Светодиоды используются практически во всех технике вокруг нас. Правда иногда возникает необходимость регулировать их яркость (например, в фонариках, или мониторах). Самым простым выходом в этой ситуации, кажется изменить количество тока, пропускаемого через светодиод. Но это не так. Светодиод – довольно чувствительный компонент. Постоянное изменение количества тока может существенно сократить срок его работы, или вообще сломать. Так же надо учитывать, что нельзя использовать ограничительный резистор, так как в нем будет накапливаться лишняя энергия. При использовании батареек это недопустимо. Еще одна проблема при таком подходе – цвет света будет меняться.

ШИМ-регулирование

Выходом из этой ситуации может быть использование широтно-импульсной модуляции (ШИМ). При такой системе светодиоды получают необходимый ток, а яркость регулируется с помощью подачи питания с высокой частотой. То есть, частота периода подачи изменяет яркость светодиодов. Несомненный плюс ШИМ-системы – сохранение продуктивности светодиода. КПД составит около 90%.

Введение

Экспоненциальный рост светодиодного освещения сопровождается расширением выбора микросхем для управления светодиодами. Импульсные драйверы светодиодов давно заменили линейные источники тока, которые потребляют значительно больше энергии. Все приложения — от карманного фонаря до табло стадионов — требуют точного управления стабилизированным током. Во многих случаях необходимо обеспечить изменение выходной интенсивности свечения светодиодов в режиме реального времени. Эту функцию обычно называют регулировкой яркости светодиодов. В данной статье представлены базовые понятия из теории светодиодов, а также некоторые методы регулировки яркости для импульсных драйверов светодиодов.

Генераторы ШИМ

В системе ШИМ в качестве задающего генератора могут использовать микроконтроллер, или схема, состоящая из схем малой степени интеграции. Так же возможно создание регулятора из микросхем, которые предназначены для импульсных блоков питания, или логические микросхемы К561, или интегральный таймер NE565. Умельцы используют в этих целях даже операционный усилитель. Для этого на нем собирается генератор, который можно регулировать. Одна из наиболее используемых схем основана на таймере 555. По сути, это обычный генератор прямоугольных импульсов. Частота регулируется конденсатором С1. при выходе у конденсатора должно быть высокое напряжение (это равно с соединением с плюсовым источником питания). А заряжается он тогда, когда на выходе присутствует низкое напряжение. Этот момент и дает получение импульсов разной ширины. Еще одной популярной схемой является ШИМ на основе микросхемы UC3843. в этом случае схема включения изменена в сторону упрощения. Для того, чтобы управлять шириной импульса, используется подача регулирующего напряжения положительной полярности. На выходе в таком случае получается нужный импульсный сигнал ШИМ. Регулирующее напряжение действует на выход так: при снижении широта увеличивается.

Добавить ссылку на обсуждение статьи на форуме

РадиоКот >Лаборатория >Цифровые устройства >

Теги статьи:Добавить тег

Переделка подсветки телевизора (устранение ШИМ-мерцания)

Автор: SSMix Опубликовано 23.09.2019 Создано при помощи КотоРед. Участник Конкурса «Поздравь Кота по-человечески 2022!»

В статье описана несложная процедура переделки телевизора LG 32LN570V в части устранения ШИМ-пульсаций подсветки экрана.

Есть в современных ЖК-телевизорах со светодиодной подсветкой такая типичная неприятная неисправность, как перегорание одного из светодиодов этой самой подсветки. Визуально это проявляется в отсутствии свечения экрана (хотя подсветка может периодически кратковременно появляться после включения с очень малой яркостью). Если посветить на экран внешним источником света, то можно рассмотреть какое-то изображение. Звук при этом присутствует. Всё дело в том, что несколько десятков мощных светодиодов подсветки соединены последовательно, как в гирлянде, и перегорание одного из них приводит к увеличению напряжения питания цепочки светодиодов схемой управления в попытке застабилизировать заданный ток подсветки. В модели телевизора LG 32LN570V в подсветке стоит 21 светодиод LATWT470RELZK по 1 Вт каждый. При нормальной работе на цепочке светодиодов падает напряжение около 75…80 В. При обрыве одного из светодиодов напряжение увеличивается до 135 В и срабатывает защита. При этом может наблюдаться кратковременное периодическое засвечивание экрана при протекании небольшого тока через неисправный светодиод. Ремонт такой неисправности в телевизорах с задней подсветкой – удовольствие не из приятных. Чтобы добраться до светодиодных линеек, необходимо разобрать матрицу полностью – со всеми светофильтрами, поляризационными и прочими плёнками. При этом есть риск повредить саму матрицу механически, по неосторожности отслоив от неё приклеенные шлейфы. После ремонта подсветки необходимо собрать всё назад в такой же последовательности. Видеоролики по процедуре ремонта подсветки в данной модели телевизора можно найти на Youtube. Там же был найден интересный ролик «Переводим LED монитор на технологию Flicker-Free (без мерцания)», в котором автор использует фильтр и внешний мощный транзистор, на котором рассеивается избыточная мощность подсветки. В данной же статье речь пойдёт о том, как работает регулировка тока подсветки, как предотвратить возникновение подобной неисправности и убрать ШИМ-мерцание подсветки более экономичным способом. Физически схема управления подсветкой расположена в блоке питания телевизора:

Вот фрагмент электрической схемы управления подсветкой:

Специализированная микросхема IC801 MAP3202SIRH включает в себя: — контроллер повышающего преобразователя (Q801, Q803, L801, D801, C801) со встроенным генератором и с обратной связью по напряжению (R831, R830, R813) и току (R820), — схему управления ключевым транзистором Q802 с обратной связью по току (R822…R829), — внутренний источник опорного напряжения 5В с током нагрузки до 10 мА, схему ШИМ-модуляции (вход PWMI), — схемы защиты: — от пониженного напряжения питания (<8В), — от повышенного тока повышающего преобразователя (>0,36В на входе CS), — от превышения напряжения питания цепочки светодиодов (>3В на выводе OVP), — от превышения тока подсветки (по выводу FBN). Вот типовая схема включения MAP3202:

Vin – это входное напряжение повышающего преобразователя, обозначенное на схеме блока питания как DD (+33В). Цепочка резисторов обратной связи по напряжению (R831, R830, R813) ограничивает выходное напряжение на уровне 135В. Резисторы в истоке ключевого транзистора Q802 (R822…R829) с результирующим сопротивлением RLED=2,05 Ом определяют ток через светодиоды подсветки как ILED= VFBP/ RLED. Опорное напряжение VFBP задано резистивным делителем R811, R814 и составляет VFBP=R814*UREF/(R811+R814)=10к*5В/(51к+10к)=0,81967В. Отсюда максимальный ток подсветки ILED=0,81967В/2,05 Ом=400мА. Если принять, что падение напряжения на одном светодиоде LATWT470RELZK составляет 3.05-3.65V, то в худшем случае при токе 400 мА на нём будет рассеиваться мощность 3.65В*0,4А=1,46Вт. Для уменьшения максимального тока через светодиоды была выпаяна одна цепочка резисторов R826, R827, в результате чего результирующее сопротивление RLED стало равным 2,73В, а максимальный ток подсветки уменьшился до ILED=0,81967В/2,73 Ом=300мА. Рассеиваемая мощность каждым светодиодом также уменьшилась до 1Вт. Субъективно яркость экрана снизилась не слишком заметно, запас остался значительным, так что в принципе можно оставлять только 2 пары токозадающих резисторов для увеличения надёжности работы светодиодов. Регулировка тока подсветки в рассматриваемой модели телевизора выполнена путём ШИМ-модуляции тока через светодиоды. Частота ШИМ во время работы составляет 120Гц (в отсутствие сигнала частота может уменьшаться до 100 Гц) . Скважность регулируется из меню ПОДСВЕТКА, а также в небольших пределах автоматически в зависимости от сюжета изображения. Сигнал ШИМ размахом 3,3В и частотой 120 Гц подаётся на вывод PWMI микросхемы MAP3202. По выходу PWMO происходит ШИМ-управление ключевым транзистором Q802. Причём, ШИМ-модуляция на входе PWMI имеется даже при установленном на 100% уровне подсветки из меню. Вот как выглядит при этом пульсация экрана телевизора (сигнал белое поле, подсветка 100%, контрастность 55%, яркость50%):

Для эксперимента был вынут контакт с проводом PWMI из разъёма P201, а параллельно резистору R804 10к подпаян переменный резистор 22к. ШИМ-мерцание полностью пропало, а ток подсветки стало возможно регулировать при помощи дополнительного переменного резистора по выводу FBP микросхемы MAP3202, уменьшая на этом выводе опорное напряжение. Можно было бы так всё и оставить (рабочий, самый простой и быстрый вариант), прикрепив дополнительный резистор внутри телевизора с выведенной наружу ручкой через заднюю крышку, но хотелось сохранить возможность оперативной регулировки уровня подсветки непосредственно с пульта ДУ телевизора. Тем более, что в данной модели для каждого источника сигнала запоминаются свои настройки. Для этой цели была разработана небольшая схема, преобразующая ШИМ-сигнал управления подсветкой в шунтирующее резистор R804 сопротивление. При этом ни при каких обстоятельствах напряжение на входе FBP микросхемы MAP3202 не должно превышать заданного делителем R811, R814 напряжения 0,81967В, дабы не повредить светодиоды подсветки повышенным током. Вот данная схема:

ШИМ- сигнал уровня подсветки размахом 3,3В поступает на ограничитель R1, DA1 для устранения влияния размаха управляющего сигнала на ток подсветки. Ограниченный на уровне 2,5 В ШИМ-сигнал делится в К=3,12 раз и сглаживается элементами R2, R3, C1, после чего подаётся на неинвертирующий вход ОУ DA2.1 MCP6002. С его выхода напряжение подаётся на вторую цепочку RC-фильтра R4, C2 и повторитель напряжения на DA2.2. Выход повторителя через ограничительный резистор R5 1к и защитный диод VD1 поступает на вход FBP микросхемы MAP3202 блока питания телевизора. На инвертирующий вход первого ОУ подано напряжение обратной связи с FBP. Таким образом происходит поддержание входного напряжения на неинвертирующем входе первого ОУ (т.е. на выходе схемы), равным выходному напряжению на входе FBP MAP3202. При 100% установленном уровне подсветки входное напряжение ОУ составит 2,5В/3,12=0,801В, т.е. не превысит штатного уровня +0,8196В на входе FBP. Диод VD1 препятствует попаданию повышенного напряжения на вход FBP в нештатных ситуациях. Фактически, схема через диод VD1 лишь шунтирует нижний резистор R804 10к в штатном делителе на входе FBP. Также диод VD1 выполняет ещё одну важную функцию. При минимальном уровне подсветки он препятствует понижению напряжения на входе FBP микросхемы MAP3202 до нулевого значения, иначе изображение на экране становится слишком тёмным. Дополнительная схема собрана на односторонней печатной плате размерами 16х17мм:

К плате блока питания телевизора подключение производится 4-мя проводками. До переделки:

После переделки:

Вход PWMI берется от перемычки J3, которая выпаивается, разрывая цепь к PWMI MAP3202. Вид с лицевой стороны в собранном виде:

После переделки было произведено измерение управляющего напряжения на входе FBP MAP3202 и вычислены токи через светодиоды подсветки с учётом сопротивления RLED=2,733 Ом:

Уровень подсветкиНапряжение на входе FBP MAP3202, мВТок через светодиоды подсветки, мА
100%788288
50%485177
45%415151
1%24790

Сама дополнительная платка была заключена в термоусадку и оставлена висеть на 4-х проводках:

После переделки получилось полное отсутствие пульсаций во всём диапазоне регулировок (сигнал белое поле, подсветка 45%, контрастность 100%, яркость50%):

Причём, если до переделки для уменьшения влияния ШИМ-мерцания на зрение приходилось устанавливать уровень подсветки на 100%, уменьшая излишнюю яркость экрана уменьшением контрастности (т.е. уменьшая светопропускание матрицы), то теперь контрастность можно устанавливать на 100%, а регулировать уровень подсветки и яркости. Как видно на первом фото, уровень яркости экрана до переделки при поднесении вплотную к экрану составлял 96 люкс при токе подсветки 400мА (100% уровень подсветки). После переделки при токе 151мА уровень яркости составил 81 люкс при 45% подсветки. Таким образом, комфортный ток подсветки был уменьшен в 2,65 раз, что благоприятно сказалась на тепловом режиме светодиодов и долговечности их работы, а также было полностью устранено ШИМ-мерцание подсветки экрана. Нагрев задней стенки телевизора после доработки заметно уменьшился. Подобную доработку возможно произвести и на других моделях телевизоров, использующих микросхему MAP3202 или аналогичную.

Файлы:

Файлы к статье

Все вопросы в Форум.

Как вам эта статья? Заработало ли это устройство у вас?
20105

Почему ШИМ?

  • Главное преимущество этой системы – легкость. Схемы использования очень просты и легки в реализации.
  • Система ШИМ – регулирования дает очень широкий диапазон регулировки яркости. Если говорить о мониторах, то возможно применение CCFL-подсветки, но в таком случае яркость можно уменьшить только в два раза, так как CCFL-подсветка очень требовательна к количеству тока и напряжению.
  • Используя ШИМ можно удерживать ток на постоянном уровне, а значит светодиоды не пострадают и цветовая температура меняться не будет.

Яркость и цветовая температура светодиодов

Яркость светодиодов

Понятие яркости видимого света, излучаемого светодиодом, объясняется достаточно просто. Численное значение воспринимаемой яркости светодиода можно легко измерить в единицах плотности светового потока, которые называют канделами (кд). Суммарная выходная мощность светодиода измеряется в люменах (лм).

Важно также понять, что средний прямой ток светодиода определяет яркость светодиода. На рисунке 1 показана зависимость прямого тока светодиода от светового выхода. Из рисунка видно, что эта зависимость является линейной в широком диапазоне применяемых значений прямого тока IF. Заметим, что при увеличении IF нелинейность возрастает. Когда ток начинает выходить за линейную область, происходит уменьшение эффективности (лм/Вт).

Рис. 1. Зависимость светового выхода от тока светодиода
Работа светодиода в режиме, превышающем диапазон линейного изменения светового выхода, приводит к преобразованию выходной мощности светодиода в тепло. Оно, в свою очередь, создает нагрузку на драйвер светодиода и усложняет систему отвода тепла.

Цветовая температура светодиода

Цветовая температура является показателем, который описывает цвет свечения светодиода и указывается в технической документации на светодиод. Цветовая температура светодиода определяется в пределах диапазона значений и меняется в зависимости от прямого тока, температуры перехода и срока службы светодиода. Более низкая цветовая температура соответствует красно-желтым цветам (которые называют теплыми), а более высокая цветовая температура — сине-зеленым цветам (холодным). Во многие цветных светодиодах специфицируется преобладающая длина волны, а не цветовая температура, и, кроме того, допускается сдвиг длины волны.

LM3409 обеспечивает множество функций регулировки яркости

Микросхема LM3409 от National Semiconductor представляет собой уникальный драйвер светодиодов, который имеет необходимую функциональность для простой аналоговой и ШИМ-регулировки яркости. Этот прибор обеспечивает четыре возможных способа реализации регулировки яркости светодиода:

  1. Аналоговая регулировка с помощью прямого управления вывода IADJ от источника напряжения в диапазоне 0…1,24 В.
  2. Аналоговая регулировка с помощью потенциометра, включенного между выводом IADJ и землей.
  3. ШИМ-регулировка с помощью вывода разрешения.
  4. ШИМ-регулировка с помощью внешних шунтирующих FET.

Схема включения микросхемы LM3409 для аналоговой регулировки с использованием потенциометра показана на рисунке 6. Внутренний 5-мкА источник тока создает падение напряжения на RADJ, которое, с свою очередь, позволяет изменять порог внутренней чувствительности по току. С той же целью вывод IADJ может напрямую управляться от источника постоянного напряжения.

Рис. 6. Схема включения LM3409 при аналоговой регулировке яркости
На рисунке 7 показан график зависимости тока светодиода от сопротивления потенциометра, включенного между выводом IADJ и GND. Плоский участок кривой при значении тока в 1 А соответствует максимальному номинальному току светодиода, который устанавливается резистором контроля тока RSNS, показанным на рисунке 4.

Рис. 7. Зависимость тока светодиода от сопротивления потенциометра
На рисунке 8 показан ток светодиода как функция напряжения на выводе IADJ. Заметим, что на этом графике виден тот же максимальный ток светодиода, установленный резистором RSNS.

Рис. 8. Зависимость тока светодиода от напряжения на выводе IADJ
Оба варианта аналоговой регулировки просты в реализации и обеспечивают весьма линейные уровни снижения яркости светодиода вплоть до 10% от максимального значения.

Методы регулировки яркости светодиодов

Существуют два популярных метода регулировки яркости светодиодов в схемах импульсных драйверов: ШИМ-регулировка и аналоговая регулировка. Оба метода контролируют усредненный во времени ток через светодиод или цепочку светодиодов, но между ними есть и различия, которые становятся ясными при обсуждении преимуществ и недостатков двух типов схем регулировки.

На рисунке 2 показан импульсный драйвер светодиодов, включенный в понижающей топологии. Напряжение VIN всегда должно быть выше напряжения на светодиоде плюс напряжение на RSNS. Ток в катушке индуктивности является током светодиода. Стабилизация тока происходит с помощью контроля напряжения на выводе CS. Когда напряжение на выводе CS начинает падать ниже установленного напряжения, рабочий цикл импульсов тока, протекающего через катушку L1, светодиод и резистор RSNS, растет, тем самым увеличивая средний ток светодиода.

Рис. 2. Топология понижающего стабилизатора

Метод расчета ИП на базе контроллера NCP1014

Рассмотрим метод пошагового расчета обратноходового преобразователя на базе NCP1014 на примере эталонной разработки ИП выходной мощностью до 5 Вт для питания системы из трех последовательно-включенных светодиодов [3]. В качестве светодиодов рассмотрены одноваттные белые светодиоды с током нормировки 350 мА и падением напряжения 3,9 В.

Первым шагом является определение входных, выходных и мощностных характеристик разрабатываемого ИП:

  • диапазон входного напряжения — Vac(min) = 85В, Vac(max) = 265В;
  • выходные параметры- Vout= 3х3,9В ≈ 11,75В, Iout = 350мА;
  • выходная мощность- Pout= VoutхIout = 11,75 Вх0,35 А ≈ 4,1Вт
  • входная мощность- Pin = Pout/h, где h — оценочный КПД = 78%

Pin = 4,1 Вт/0,78 = 5,25 Вт

  • диапазон входного напряжения по постоянному току

Vdc(min) = Vdc(min) х 1,41 = 85 х 1,41 = 120 В (dc)

Vdc(max) = Vdc(max) х 1,41 = 265 х 1,41 = 375 В (dc)

  • средний входной ток — Iin(avg) = Pin / Vdc(min) ≈ 5,25/120 ≈ 44мА
  • пиковый входной ток- Ipeak= 5хIin(avg) ≈ 220мА.

Первым входным звеном является предохранитель и EMI-фильтр, и их выбор является вторым шагом при проектировании ИП. Предохранитель должен выбираться исходя из значения тока разрыва, и в представленной разработке выбран предохранитель с током разрыва 2 А. Мы не будем углубляться в процедуру расчета входного фильтра, а лишь отметим, что степень подавления синфазных и дифференциальных помех в значительной мере зависит от топологии печатной платы, а также близости расположения фильтра к разъему питания.

Третьим шагом является расчет параметров и выбор диодного моста. Ключевыми параметрами здесь являются:

  • допустимое обратное (блокирующее) напряжение диода- VR ≥ Vdc(max) = 375В;
  • прямой ток диода- IF ≥ 1,5хIin(avg) = 1,5х0,044 = 66мА;
  • допустимый ток перегрузки (surge current), который может достигать пятикратного значения среднего тока:

IFSM ≥ 5 х IF = 5 х 0,066 = 330 мА.

Четвертым шагом является расчет параметров входного конденсатора, устанавливаемого на выход диодного моста. Размеры входного конденсатора определяются пиковым значением выпрямленного входного напряжения и заданным уровнем входных пульсаций. Больший входной конденсатор обеспечивает более низкие значения пульсаций, но увеличивает пусковой ток ИП. В общем случае емкость конденсатора определяется следующей формулой:

Cin = Pin/, где

fac — частота сети переменного тока (60 Гц для рассматриваемого дизайна);

DV — допустимый уровень пульсаций (20% от Vdc(min) в нашем случае).

Cin = 5,25/[60 х (1202 — 962)] = 17 мкФ.

В нашем случае мы выбираем алюминиевый электролитический конденсатор емкостью 33 мкФ.

Пятым и основным шагом является расчет моточного изделия — импульсного трансформатора. Расчет трансформатора является наиболее сложной, важной и «тонкой» частью всего расчета источника питания. Основными функциями трансформатора в обратноходовом преобразователе является накопление энергии при замкнутом управляющем ключе и протекании тока через его первичную обмотку, а затем — ее передача во вторичную обмотку при отключении питания первичной части схемы.

С учетом входных и выходных характеристик ИП, рассчитанных на первом шаге, а также требования по обеспечению работы ИП в режиме непрерывного тока трансформатора, максимальное значение коэффициента заполнения (duty cycle) равно 48%. Все расчеты трансформатора мы будем проводить, основываясь на данном значении коэффициента заполнения. Обобщим расчетные и заданные значения ключевых параметров:

  • частота работы контроллера fop= 100 кГц
  • коэффициент заполнения dmax= 48%
  • минимальное входное напряжение Vin(min) = Vdc(min) — 20% = 96В
  • выходная мощность Pout= 4,1Вт
  • оценочное значение КПДh = 78%
  • пиковое значение входного тока Ipeak= 220мА

Теперь мы можем произвести расчет индуктивности первичной обмотки трансформатора:

Lpri = Vin(min) х dmax/(Ipeak х fop) = 2,09 мГн

Соотношение количества витков обмоток определяется уравнением:

Npri/Nsec = Vdc(min) х dmax/(Vout + VF х (1 — dmax)) ≈ 7

Нам осталось проверить способность трансформатора «прокачать» через себя требуемую выходную мощность. Сделать это можно с помощью следующего уравнения:

Pin(core) = Lpri х I2peak х fop/2 ≥ Pout

Pin(core) = 2,09 мГн х 0,222 х 100 кГц/2 = 5,05 Вт ≥ 4,1 Вт.

Из результатов следует, что наш трансформатор может прокачать требуемую мощность.

Можно заметить, что здесь мы привели далеко не полный расчет параметров трансформатора, а лишь определили его индуктивные характеристики и показали достаточную мощность выбранного решения. По расчету трансформаторов написано множество трудов, и читатель может найти интересующие его методики расчета, например в [4] или [5]. Освещение этих методик выходит за рамки данной статьи.

Электрическая схема ИП, соответствующая проведенным расчетам, представлена на рисунке 5.

Рис. 5. Принципиальная схема ИП

Теперь пришла пора ознакомиться с особенностями приведенного решения, расчет которых не был приведен выше, но которые имеют большое значение для функционирования нашего ИП и понимания особенностей реализации защитных механизмов, реализуемых контроллером NCP1014.

Желаете познакомиться с NCP1014 лично? — Нет проблем!

Для тех, кто перед началом разработки собственного ИП на базе NCP1014 хочет убедиться в том, что это действительно простое, надежное и эффективное решение, компания ONSemiconductor выпускает несколько типов оценочных плат (см таблицу 1, рис. 6; доступны для заказа через компанию КОМПЭЛ).

Таблица 1. Обзор оценочных плат

Код заказаНаименованиеКраткое описание
NCP1014LEDGTGEVBДрайвер светодиодов мощностью 8 Вт с коэффициентом мощности 0,8Плата разработана с целью демонстрации возможности построения LED-драйвера с коэффициентом мощности > 0,7 (стандарт Energy Star) без применения дополнительной микросхемы PFC. Выходная мощность (8 Вт) делает представленное решение идеальным для питания структур подобных Cree XLAMP MC-E, содержащих четыре последовательных светодиода в одном корпусе.
NCP1014STBUCGEVBНеинвертирующий понижающий преобразовательПлата является доказательством утверждения, что контроллера NCP1014 достаточно для построения ИП низкого ценового диапазона для жестких условий работы.

Рис. 6. Внешний вид оценочной платы

Кроме того, существует еще несколько примеров готового дизайна различных ИП, помимо рассмотренного в статье. Это и 5 Вт AC/DC-адаптер для сотовых телефонов [6], и еще один вариант ИП для LED [7], а также большое количество статей по применению контроллера NCP1014, которые вы можете найти на официальном сайте компании ONSemiconductor — https://www.onsemi.com/.

Компания КОМПЭЛ является официальным дистрибьютором ONSemiconductor и поэтому на нашем сайте https://catalog.compel.ru/ вы всегда можете найти информацию о доступности и стоимости микросхем, выпускаемых ONS, а также заказать опытные образцы, в том числе и NCP1014.

Аналоговая регулировка яркости

Аналоговая регулировка яркости светодиодов заключается в подстройке тока светодиода. Проще говоря, это регулировка уровня постоянного тока светодиода. Аналоговая регулировка может выполняться с помощью подстройки резистора контроля тока RSNS или путем управления аналоговым напряжением на выводе DIM микросхемы. На рисунке 2 показаны эти два способа аналоговой регулировки.

Аналоговая регулировка с помощью подстройки RSNS

Из рисунка 2 видно, что изменение сопротивления RSNS приводит к соответствующему изменению тока светодиода при фиксированном опорном напряжении на выводе CS. Если бы можно было найти потенциометр, способный управлять высоким током светодиода, а также работать в диапазоне до 1 Ом, то это был бы практически осуществимый метод регулировки яркости светодиодов.

Аналоговая регулировка с помощью управления постоянным напряжением на выводе CS

Более сложным методом регулировки является прямое управление током светодиода посредством подачи напряжения на вывод CS. Источник напряжения обычно включают в цепь обратной связи, ток в которой формируется усилителем (см. рис. 2). Ток светодиода можно контролировать с помощью коэффициента усиления усилителя. С помощью цепи обратной связи можно реализовать токовую и тепловую защиту светодиода.

Недостатком аналоговой регулировки является то, что цветовая температура излучаемого света может меняться в зависимости от тока светодиода. В случае, когда цвет свечения светодиода является критически важным параметром или у конкретного светодиода наблюдаются заметные изменения цветовой температуры при изменении тока светодиода, регулировка яркости путем подстройки тока светодиода становится недопустимой.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]